Laser & Optoelectronics Progress, Volume. 60, Issue 14, 1410009(2023)

Low-Light Image-Enhancement Algorithm Based on Homomorphic Frequency Division Aggregation

Yali Zhang1, Shaobo Ding1, Changlu Li1、*, Xinming Yao2, and Wenyuan Li1
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2Forty-Fifth Research Institute of China Electronics Technology Group Corporation, Beijing 100176, China
  • show less
    References(29)

    [1] Wu J W, Wang S Y. Statistical-based adaptive background modeling algorithm for grayscale video[J]. Chinese Journal of Lasers, 48, 0309001(2021).

    [2] Qiu Y F, Wen J Y. Image semantic segmentation based on combination of DeepLabV3+ and attention mechanism[J]. Laser & Optoelectronics Progress, 59, 0410008(2022).

    [3] Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering[C], 815-823(2015).

    [4] Hummel R. Image enhancement by histogram transformation[J]. Computer Graphics and Image Processing, 6, 184-195(1977).

    [5] Land E H, McCann J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 61, 1-11(1971).

    [6] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 6, 451-462(1997).

    [7] Rahman Z, Jobson D J, Woodell G A. Multi-scale retinex for color image enhancement[C], 1003-1006(1996).

    [8] Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 6, 965-976(1997).

    [9] Guo X J, Li Y, Ling H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 26, 982-993(2017).

    [10] Lore K G, Akintayo A, Sarkar S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 61, 650-662(2017).

    [11] Xiao Z T, Zhang X P, Zhang F et al. Diabetic retinopathy retinal image enhancement based on gamma correction[J]. Journal of Medical Imaging and Health Informatics, 7, 149-154(2017).

    [13] Guo C L, Li C Y, Guo J C et al. Zero-reference deep curve estimation for low-light image enhancement[C], 1777-1786(2020).

    [14] Jiang Y F, Gong X Y, Liu D et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 30, 2340-2349(2021).

    [15] Zha T B, Luo L, Yang K et al. Image reconstruction algorithm based on improved super-resolution generative adversarial network[J]. Laser & Optoelectronics Progress, 58, 0810005(2021).

    [16] Cheng X. Image enhancement algorithm based on homomorphic filtering[D](2016).

    [17] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [18] Dabov K, Foi A, Katkovnik V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    [19] He K M, Zhang X Y, Ren S Q et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C], 1026-1034(2015).

    [20] Wang A L, Zhang Y X, Wu H B et al. LiDAR data classification based on dilated convolution capsule network[J]. Chinese Journal of Lasers, 48, 1110003(2021).

    [21] Li Y, Jin Q Y, Zhao H C et al. Hyperspectral image reconstruction based on improved residual dense network[J]. Acta Optica Sinica, 41, 0730001(2021).

    [23] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9906, 694-711(2016).

    [24] Arbeláez P, Maire M, Fowlkes C et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 898-916(2011).

    [25] Agustsson E, Timofte R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C], 1122-1131(2017).

    [26] Yang G C, Yang J, Li S B et al. Modified CNN algorithm based on Dropout and ADAM optimizer[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 46, 122-127(2018).

    [27] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [28] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2013).

    [29] Gu K, Lin W S, Zhai G T et al. No-reference quality metric of contrast-distorted images based on information maximization[J]. IEEE Transactions on Cybernetics, 47, 4559-4565(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yali Zhang, Shaobo Ding, Changlu Li, Xinming Yao, Wenyuan Li. Low-Light Image-Enhancement Algorithm Based on Homomorphic Frequency Division Aggregation[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1410009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 22, 2022

    Accepted: Sep. 5, 2022

    Published Online: Jul. 17, 2023

    The Author Email: Li Changlu (3383928167@qq.com)

    DOI:10.3788/LOP221078

    Topics