Journal of the Chinese Ceramic Society, Volume. 50, Issue 9, 2551(2022)
Recent Development on Geopolymerization Mechanism and Geopolymerization Kinetics of Geopolymers
[1] [1] DAVIDOVITS J. Geopolymer Chemistry and Applications, 5th edition[M]. Saint-Quentin, Geopolymer Institute, 2017: 7-11.
[2] [2] DAVIDOVITS J. Geopolymers: ceramic-like inorganic polymers[J]. J Ceram Sci Technol, 2017, 8(3): 335-350.
[3] [3] ROVNAN K P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer[J]. Constr Build Mater, 2010, 24(7): 1176-1183.
[4] [4] DUXSON P, PROVIS J L, LUKEY G C, et al. The role of inorganic polymer technology in the development of ‘green concrete’[J]. Cem Concr Res, 2007, 37(12): 1590-1597.
[5] [5] HU W, MA Y, KOEHLER M, et al. Mix design optimization and early strength prediction of unary and binary geopolymer from multiple waste streams[J]. J Hazard Mater, 2021, 403: 123632.
[6] [6] ZHANG S, BAI X, ZHAO C, et al. China's carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies[J]. J Clean Prod, 2022, 347: 130966.
[7] [7] ELICHE-QUESADA D, CALERO-RODR GUEZ A, BONET-MART NEZ E, et al. Geopolymers made from metakaolin sources, partially replaced by Spanish clays and biomass bottom ash[J]. J Build Eng, 2021, 40: 102761.
[8] [8] HUI-TENG N, CHENG-YONG H, YUN-MING L, et al. Comparison of thermal performance between fly ash geopolymer and fly ash-ladle furnace slag geopolymer[J]. J Non-Cryst Solids, 2022, 585: 121527.
[9] [9] ZHOU S, YANG Z, ZHANG R, et al. Preparation, characterization and rheological analysis of eco-friendly road geopolymer grouting materials based on volcanic ash and metakaolin[J]. J Clean Prod, 2021, 312: 127822.
[10] [10] POLAT D, G DEN M. Processing and characterization of geopolymer and sintered geopolymer foams of waste glass powders[J]. Constr Build Mater, 2021, 300: 124259.
[11] [11] DADSETAN S, SIAD H, LACHEMI M, et al. Optimization and characterization of geopolymer binders from ceramic waste, glass waste and sodium glass liquid[J]. J Clean Prod, 2022, 342: 130931.
[12] [12] MORENO-MAROTO J M, DELGADO-PLANA P, CABEZAS- RODR GUEZ R, et al. Alkaline activation of high-crystalline low-Al2O3 Construction and Demolition Wastes to obtain geopolymers[J]. J Clean Prod, 2022, 330: 129770.
[16] [16] TIAN L, FENG W, MA H, et al. Investigation on the microstructure and mechanism of geopolymer with different proportion of quartz and K-feldspar[J]. Constr Build Mater, 2017, 147: 543-549.
[17] [17] XU H, VAN DEVENTER J S J. The geopolymerisation of alumino-silicate minerals[J]. Int J Miner Process, 2000, 59(3): 247-266.
[18] [18] HAJIMOHAMMADI A, VAN DEVENTER J S J. Dissolution behaviour of source materials for synthesis of geopolymer binders: A kinetic approach[J]. Int J Miner Process, 2016, 153: 80-86.
[19] [19] JIA D, HE P, WANG M, et al. Geopolymer and Geopolymer Matrix Composites[M]. Springer: Singapore, 2020: 24-29.
[20] [20] XU D, HUANG Y, JIN X, et al. Synergistic treatment of heavy metals in municipal solid waste incineration fly ash with geopolymer and chemical stabilizers[J]. Process Saf Eeviron, 2022, 160: 763-774.
[21] [21] LIU X, JIANG J, ZHANG H, et al. Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash[J]. Appl Clay Sci, 2020, 196: 105769.
[23] [23] GUPTA R, TOMAR A S, MISHRA D, et al. Multifaceted geopolymer coating: Material development, characterization and study of long term anti-corrosive properties[J]. Micropor Mesopor Mater, 2021, 317: 110995.
[24] [24] RAJAN H S, KATHIRVEL P. Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste[J]. J Clean Prod, 2021, 286: 124959.
[25] [25] MA S, YANG H, ZHAO S, et al. 3D-printing of architectured short carbon fiber-geopolymer composite[J]. Compos Part B-Eng, 2021, 226: 109348.
[26] [26] HE P, CUI J, WANG M, et al. Interplay between storage temperature, medium and leaching kinetics of hazardous wastes in Metakaolin- ased geopolymer[J]. J Hazard Mater, 2020, 384: 121377.
[27] [27] TIAN Q, CHEN C, WANG M, et al. Effect of Si/Al molar ratio on the immobilization of selenium and arsenic oxyanions in geopolymer[J]. Environ Pollut, 2021, 274: 116509.
[28] [28] GAO H, LIAO L, LIANG Y, et al. Improvement of durability of porous perlite geopolymer-based thermal insulation material under hot and humid environment[J]. Constr Build Mater, 2021, 313: 125417.
[29] [29] AMRAN M, HUANG S, DEBBARMA S, et al. Fire resistance of geopolymer concrete: A critical review[J]. Constr Build Mater, 2022, 324: 126722.
[30] [30] AYENI O, ONWUALU A P, BOAKYE E. Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications[J]. Constr Build Mater, 2021, 272: 121938.
[33] [33] YUAN J, LI L, CAO J, et al. Preparation and characterization of Cf/Pollucite composites through geopolymer precursors[J]. Ceram Int, 2021, 47(22): 31713-31723.
[34] [34] MA S, HE P, ZHAO S, et al. Formation of SiC whiskers/leucite-based ceramic composites from low temperature hardening geopolymer[J]. Ceram Int, 2021, 47(13): 17930-17938.
[35] [35] FU S, HE P, WANG M, et al. Monoclinic-celsian ceramics formation: Through thermal treatment of ion-exchanged 3D printing geopolymer precursor[J]. J Eur Ceram Soc, 2019, 39(2): 563-573.
[36] [36] HE P, FU S, YUAN J, et al. Celsian formation from barium-exchanged geopolymer precursor: Thermal evolution[J]. J Eur Ceram Soc, 2017, 37(13): 4179-4185.
[37] [37] YUAN J, HE P, LIANG X, et al. Thermal evolution of lithium ion substituted cesium-based geopolymer under high temperature treatment, Part I: Effects of holding temperature[J]. Ceram Int, 2018, 44(9): 10047-54.
[38] [38] WAN Q, ZHANG Y, ZHANG R. Using mechanical activation of quartz to enhance the compressive strength of metakaolin based geopolymers[J]. Cem Concr Comp, 2020, 111: 103635.
[39] [39] CHEN X, SUTRISNO A, ZHU L, et al. Setting and nanostructural evolution of metakaolin geopolymer[J]. J Am Ceram Soc, 2017, 100(5): 2285-2295.
[40] [40] AMBIKAKUMARI SANALKUMAR K U, YANG E H. Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers [J]. Cem Concr Comp, 2021, 115: 103847.
[41] [41] WAN Q, RAO F, SONG S. Reexamining calcination of kaolinite for the synthesis of metakaolin geopolymers-roles of dehydroxylation and recrystallization[J]. J Non-Cryst Solids, 2017, 460: 74-80.
[42] [42] LONGHI M A, WALKLEY B, RODR GUEZ E D, et al. New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers[J]. Compos Part B-Eng, 2019, 176: 107172.
[43] [43] DUXSON P, MALLICOAT S W, LUKEY G C, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloid Surface A, 2007, 292(1): 8-20.
[44] [44] LIANG G, ZHU H, LI H, et al. Comparative study on the effects of rice husk ash and silica fume on the freezing resistance of metakaolin-based geopolymer[J]. Constr Build Mater, 2021, 293: 123486.
[45] [45] More suppliers join the wave of global kaolin price hikes[J]. Focus Pigm, 2021, 2021(11): 3-4.
[46] [46] DUXSON P, FERN NDEZ-JIM NEZ A, PROVIS J L, et al. Geopolymer technology: the current state of the art[J]. J Mater Sci, 2007, 42(9): 2917-33.
[52] [52] ZHANG P, WANG K, LI Q, et al. Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review[J]. J Clean Prod, 2020, 258: 120896.
[53] [53] CRIADO M, FERN NDEZ-JIM NEZ A, PALOMO A, et al. Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey[J]. Micropor Mesopor Mat, 2008, 109(1): 525-534.
[54] [54] CRIADO M, FERN NDEZ-JIM NEZ A, PALOMO A. Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study [J]. Micropor Mesopor Mat, 2007, 106(1): 180-191.
[55] [55] FERN NDEZ-JIM NEZ A, PALOMO A, SOBRADOS I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes[J]. Micropor Mesopor Mat, 2006, 91(1): 111-119.
[56] [56] WENG L, SAGOE-CRENTSIL K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I-Low Si/Al ratio systems[J]. J Mater Sci, 2007, 42(9): 2997-3006.
[57] [57] GRANIZO N, PALOMO A, FERNANDEZ-JIM NEZ A. Effect of temperature and alkaline concentration on metakaolin leaching kinetics[J]. Ceram Int, 2014, 40(7, Part A): 8975-8985.
[58] [58] YUAN J, LI L, HE P, et al. Effects of kinds of alkali-activated ions on geopolymerization process of geopolymer cement pastes[J]. Constr Build Mater, 2021, 293: 123536.
[59] [59] GARG N, SKIBSTED J. Dissolution kinetics of calcined kaolinite and montmorillonite in alkaline conditions: Evidence for reactive Al(V) sites[J]. J Am Ceram Soc, 2019, 102(12): 7720-7734.
[60] [60] CHEN C, GONG W, LUTZE W, et al. Kinetics of fly ash geopolymerization[J]. J Mater Sci, 2011, 46(9): 3073-3083.
[61] [61] LLOYD R R, PROVIS J L, VAN DEVENTER J S J. Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder[J]. J Mater Sci, 2009, 44(2): 620-631.
[62] [62] WHITE C E, PROVIS J L, LLOBET A, et al. Evolution of local structure in geopolymer gels: An in situ neutron pair distribution function analysis[J]. J Am Ceram Soc, 2011, 94(10): 3532-3539.
[63] [63] FERN NDEZ-JIM NEZ A, PALOMO A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator [J]. Cem Concr Res, 2005, 35(10): 1984-1992.
[64] [64] GULTEKIN A, RAMYAR K. Effect of curing type on microstructure and compressive strength of geopolymer mortars[J]. Ceram Int, 2022, 48(11): 16156-16172.
[65] [65] DUXSON P, PROVIS J L, LUKEY G C, et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties[J]. Colloid Surface A, 2005, 269(1): 47-58.
[66] [66] REES C A, PROVIS J L, LUKEY G C, et al. The mechanism of geopolymer gel formation investigated through seeded nucleation[J]. Colloid Surface A, 2008, 318(1): 97-105.
[67] [67] HAJIMOHAMMADI A, PROVIS J L, VAN DEVENTER J S J. Effect of alumina release rate on the mechanism of geopolymer gel formation [J]. Chem Mater, 2010, 22(18): 5199-5208.
[68] [68] XU H, VAN DEVENTER J S J, LUKEY G C. Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures[J]. Ind Eng Chem Res, 2001, 40(17): 3749-3756.
[69] [69] ZHANG Z, PROVIS J L, ZOU J, et al. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture[J]. Cem Concr Res, 2016, 85: 163-173.
[70] [70] LONGHI M A, RODR GUEZ E D, WALKLEY B, et al. Metakaolin-based geopolymers: Efflorescence and its effect on microstructure and mechanical properties[J]. Ceram Int, 2022, 48(2): 2212-2229.
[71] [71] FERN NDEZ-JIM NEZ A, PALOMO A. Characterisation of fly ashes. Potential reactivity as alkaline cements[J]. Fuel, 2003, 82(18): 2259-2265.
[72] [72] KUMAR S, KUMAR R. Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer[J]. Ceram Int, 2011, 37(2): 533-541.
[73] [73] CHEN-TAN N W, VAN RIESSEN A, LY C V, et al. Determining the reactivity of a fly ash for production of geopolymer[J]. J Am Ceram Soc, 2009, 92(4): 881-887.
[74] [74] LI C, LI Y, SUN H, et al. The composition of fly ash glass phase and its dissolution properties applying to geopolymeric materials[J]. J Am Ceram Soc, 2011, 94(6): 1773-1778.
[75] [75] FILLENWARTH B A, SASTRY S M L. Development of a predictive optimization model for the compressive strength of sodium activated fly ash based geopolymer pastes[J]. Fuel, 2015, 147: 141-146.
[77] [77] TCHADJIL N, DJOBO J N Y, RANJBAR N, et al. Potential of using granite waste as raw material for geopolymer synthesis[J]. Ceram Int, 2016, 42(2, Part B): 3046-3055.
[79] [79] KANUCHOVA M, DRABOVA M, SISOL M, et al. Influence of mechanical activation of fly ash on the properties of geopolymers investigated by XPS method[J]. Environ Prog Sustain, 2016, 35(5): 1338-1343.
[80] [80] TCHADJIE L N, EKOLU S O. Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis[J]. J Mater Sci, 2018, 53(7): 4709-33.
[81] [81] WEI B, ZHANG Y, BAO S. Preparation of geopolymers from vanadium tailings by mechanical activation[J]. Constr Build Mater, 2017, 145: 236-242.
[83] [83] TORRES S NCHEZ R M, BASALDELLA E I, MARCO J F. The effect of thermal and mechanical treatments on kaolinite: characterization by XPS and IEP measurements[J]. J Colloid Interf Sci, 1999, 215(2): 339-344.
[84] [84] JIA D, LIANG B, YANG Z, et al. Metastable Si-B-C-N ceramics and their matrix composites developed by inorganic route based on mechanical alloying: Fabrication, microstructures, properties and their relevant basic scientific issues[J]. Prog Mater Sci, 2018, 98: 1-67.
[85] [85] HOUNSI A D, LECOMTE-NANA G L, DJ T LI G, et al. Kaolin-based geopolymers: Effect of mechanical activation and curing process[J]. Constr Build Mater, 2013, 42: 105-113.
[86] [86] WANG M R, JIA D C, HE P G, et al. Influence of calcination temperature of kaolin on the structure and properties of final geopolymer[J]. Mater Lett, 2010, 64(22): 2551-2554.
[87] [87] LI G, ZENG J, LUO J, et al. Thermal transformation of pyrophyllite and alkali dissolution behavior of silicon[J]. Appl Clay Sci, 2014, 99: 282-288.
[88] [88] BUCHWALD A, HOHMANN M, POSERN K, et al. The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders[J]. Appl Clay Sci, 2009, 46(3): 300-304.
[89] [89] BONDAR D, LYNSDALE C J, MILESTONE N B, et al. Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans[J]. Constr Build Mater, 2011, 25(10): 4065-4071.
[90] [90] RAMUDZWAGI M, TSHIONGO-MAKGWE N, NHETA W. Recent developments in beneficiation of fine and ultra-fine coal-Review paper[J]. J Clean Prod, 2020, 276: 122693.
[91] [91] WANG G, BAI X, WU C, et al. Recent advances in the beneficiation of ultrafine coal particles[J]. Fuel Process Technol, 2018, 178: 104-125.
[93] [93] CAO Y, WANG Y, ZHANG Z, et al. Recycled sand from sandstone waste: A new source of high-quality fine aggregate[J]. Resour Conserv Recy, 2022, 179: 106116.
[94] [94] KE Y, LIANG S, HOU H, et al. A zero-waste strategy to synthesize geopolymer from iron-recovered Bayer red mud combined with fly ash: Roles of Fe, Al and Si[J]. Constr Build Mater, 2022, 322: 126176.
[95] [95] HU Y, LIANG S, YANG J, et al. Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud[J]. Constr Build Mater, 2019, 200: 398-407.
[96] [96] CHEN C, GONG W, LUTZE W, et al. Kinetics of fly ash leaching in strongly alkaline solutions[J]. J Mater Sci, 2011, 46(3): 590-597.
[97] [97] SAGOE-CRENTSIL K, WENG L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems[J]. J Mater Sci, 2007, 42(9): 3007-3014.
[98] [98] WENG L, SAGOE-CRENTSIL K, BROWN T, et al. Effects of aluminates on the formation of geopolymers[J]. Mater Sci Eng B-Adv, 2005, 117(2): 163-168.
[99] [99] CRIADO M, FERN NDEZ-JIM NEZ A, DE LA TORRE A G, et al. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash[J]. Cem Concr Res, 2007, 37(5): 671-679.
[100] [100] MALKAWI A B, NURUDDIN M F, FAUZI A, et al. Effects of alkaline solution on properties of the HCFA geopolymer mortars[J]. Proced Eng, 2016, 148: 710-717.
[101] [101] BOCULLO V, VITOLA L, VAICIUKYNIENE D, et al. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash[J]. Mater Chem Phys, 2021, 258: 123846.
[102] [102] VAN JAARSVELD J G S, VAN DEVENTER J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers [J]. Ind Eng Chem Res, 1999, 38(10): 3932-3941.
[103] [103] DUXSON P, LUKEY G C, SEPAROVIC F, et al. Effect of alkali cations on aluminum incorporation in geopolymeric gels[J]. Ind Eng Chem Res, 2005, 44(4): 832-839.
[104] [104] DUXSON P, PROVIS J L, LUKEY G C, et al. 39K NMR of free potassium in geopolymers[J]. Ind Eng Chem Res, 2006, 45(26): 9208-9210.
[105] [105] HATTAF R, ABOULAYT A, SAMDI A, et al. Metakaolin and fly ash-based matrices for geopolymer materials: setting kinetics and compressive strength[J]. Silicon-Neth, 2021: 1-12.
[106] [106] LIU Z, SHAO N N, HUANG T Y, et al. Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash[J]. Int J Min Met Mater, 2014, 21(6): 620-626.
[107] [107] MILLS J N, KATZAROVA M, WAGNER N J. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization[J]. Adv Space Res, 2022, 69(1): 761-777.
[108] [108] JOHN S K, NADIR Y, GIRIJA K. Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review[J]. Constr Build Mater, 2021, 280: 122443.
[109] [109] ARNOULT M, PERRONNET M, AUTEF A, et al. Geopolymer synthetized using reactive or unreactive aluminosilicate. understanding of reactive mixture[J]. Mater Chem Phys, 2019, 237: 121837.
[110] [110] YANG J, XU L, WU H, et al. Microstructure and mechanical properties of metakaolin-based geopolymer composites containing high volume of spodumene tailings[J]. Appl Clay Sci, 2022, 218: 106412.
[111] [111] FURLANI E, MASCHIO S, MAGNAN M, et al. Synthesis and characterization of geopolymers containing blends of unprocessed steel slag and metakaolin: The role of slag particle size[J]. Ceram Int, 2018, 44(5): 5226-5232.
[112] [112] ROBAYO-SALAZAR R A, MEJ A DE GUTI RREZ R, PUERTAS F. Effect of metakaolin on natural volcanic pozzolan-based geopolymer cement[J]. Appl Clay Sci, 2016, 132-133: 491-497.
[113] [113] CONG P, MEI L. Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum [J]. Constr Build Mater, 2021, 275: 122171.
[114] [114] SEIFAN M, MENDOZA S, BERENJIAN A. Mechanical properties and durability performance of fly ash based mortar containing nano- and micro-silica additives[J]. Constr Build Mater, 2020, 252: 119121.
[115] [115] ALOMAYRI T. Performance evaluation of basalt fiber-reinforced geopolymer composites with various contents of nano CaCO3[J]. Ceram Int, 2021, 47(21): 29949-29959.
[116] [116] SINHA A K, TALUKDAR S. Enhancement of the properties of silicate activated ultrafine-slag based geopolymer mortar using retarder[J]. Constr Build Mater, 2021, 313: 125380.
[117] [117] LEE N K, KIM E M, LEE H K. Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex[J]. Constr Build Mater, 2016, 113: 264-272.
[118] [118] DUPUY C, HAVETTE J, GHARZOUNI A, et al. Metakaolin-based geopolymer: Formation of new phases influencing the setting time with the use of additives[J]. Constr Build Mater, 2019, 200: 272-281.
[119] [119] WANG J, HAN L, LIU Z, et al. Setting controlling of lithium slag-based geopolymer by activator and sodium tetraborate as a retarder and its effects on mortar properties[J]. Cem Concr Comp, 2020, 110: 103598.
[121] [121] ASSI L N, DEAVER E, ZIEHL P. Using sucrose for improvement of initial and final setting times of silica fume-based activating solution of fly ash geopolymer concrete[J]. Constr Build Mater, 2018, 191: 47-55.
[122] [122] LI Z, ZHANG S, ZUO Y, et al. Chemical deformation of metakaolin based geopolymer[J]. Cem Concr Res, 2019, 120: 108-118.
[123] [123] ARCHEZ J, FARGES R, GHARZOUNI A, et al. Influence of the geopolymer formulation on the endogeneous shrinkage[J]. Constr Build Mater, 2021, 298: 123813.
[124] [124] SI R, DAI Q, GUO S, et al. Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder[J]. J Clean Prod, 2020, 242: 118502.
[126] [126] KUENZEL C, VANDEPERRE L J, DONATELLO S, et al. Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers[J]. J Am Ceram Soc, 2012, 95(10): 3270-3277.
[127] [127] ZHANG B, ZHU H, FENG P, et al. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives[J]. J Build Eng, 2022, 49: 104056.
[128] [128] RIAHI S, NEMATI A, KHODABANDEH A R, et al. The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers[J]. Mater Chem Phys, 2020, 240: 122223.
[129] [129] CHEN W, XIE Y, LI B, et al. Role of aggregate and fibre in strength and drying shrinkage of alkali-activated slag mortar[J]. Constr Build Mater, 2021, 299: 124002.
[130] [130] MATALKAH F, SALEM T, SHAAFAEY M, et al. Drying shrinkage of alkali activated binders cured at room temperature[J]. Constr Build Mater, 2019, 201: 563-570.
[131] [131] PALACIOS M, PUERTAS F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cem Concr Res, 2007, 37(5): 691-702.
[132] [132] YE H, FU C, LEI A. Mitigating shrinkage of alkali-activated slag by polypropylene glycol with different molecular weights[J]. Constr Build Mater, 2020, 245: 118478.
[133] [133] MA H, ZHU H, WU C, et al. Effect of shrinkage reducing admixture on drying shrinkage and durability of alkali-activated coal gangue-slag material[J]. Constr Build Mater, 2021, 270: 121372.
[134] [134] LI Z, WYRZYKOWSKI M, DONG H, et al. Internal curing by superabsorbent polymers in alkali-activated slag[J]. Cem Concr Res, 2020, 135: 106123.
[135] [135] JIANG D, LI X, LV Y, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer[J]. Cem Concr Res, 2021, 149: 106581.
[136] [136] LI Z, ZHANG S, LIANG X, et al. Internal curing of alkali-activated slag-fly ash paste with superabsorbent polymers[J]. Constr Build Mater, 2020, 263: 120985.
Get Citation
Copy Citation Text
WANG Qikun, MA Siqi, YANG Hualong, HE Peigang, JIA Dechang. Recent Development on Geopolymerization Mechanism and Geopolymerization Kinetics of Geopolymers[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2551
Category:
Received: Apr. 21, 2022
Accepted: --
Published Online: Jan. 3, 2023
The Author Email: Qikun WANG (19B309004@stu.hit.edu.cn)