Acta Geographica Sinica, Volume. 75, Issue 7, 1373(2020)
[1] et alEffects of strong ground motion on the susceptibility of gully type debris flows[J]. Engineering Geology, 104, 241-253(2009).
[3] Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China[J]. International Journal of Disaster Risk Reduction, 25, 60-71(2017).
[5] et alRegional risk assessment of debris flows in China: An HRU-based approach[J]. Geomorphology, 340, 84-102(2019).
[7] et alAssessing strategies to mitigate debris-flow risk in Abancay province, south-central Peruvian Andes[J]. Geomorphology, 342, 127-139(2019).
[9] Acceptability of debris-flow disasters: Comparison of two case studies in China[J]. International Journal of Disaster Risk Reduction, 34, 45-54(2019).
[10] A strategic approach to debris flow risk reduction on the road network[J]. Procedia Engineering, 143, 759-768(2016).
[11] et alSimulation of interactions between debris flow and check dams on three-dimensional terrain[J]. Engineering Geology, 251, 48-62(2019).
[13] [J], 32, 43-49(2017).
[14] Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques[J]. The Egyptian Journal of Remote Sensing and Space Science, 17, 111-121(2014).
[15] et alContinuous deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 32, 809-812(2004).
[16] Geological environment and sisasters along railway line in the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 14, 31-37(2007).
[17] [J], 25, 6-11(2014).
[18] et al[J], 64, 2770-2782(2019).
[19] et alGeomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan[J]. Geomorphology, 103, 227-250(2009).
[20] et al[J], 41, 350-361(2011).
[21] Karakorum-Hindukush-western Himalaya: Assessing high-altitude water resources[J]. Hydrological Processes, 19, 2329-2338(2005).
[22] et al[J], 28, 102-106(2013).
[23] et al[J], 28, 129-135(2014).
[24] [J], 16, 137-143(1996).
[25] Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques[J]. Environmental Earth Sciences, 68, 1967-1977(2013).
[26] Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong[J]. Geomorphology, 42, 213-228(2002).
[27] et alDetecting major terrain parameters relating to mass movements' occurrence using GIS, remote sensing and statistical correlations, case study Lebanon[J]. Remote Sensing of Environment, 99, 448-461(2005).
[28] et alThe knowledge rules of debris flow event: A case study for investigation Chen Yu Lan River, Taiwan[J]. Engineering Geology, 98, 102-114(2008).
[29] Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis[J]. Geological Society of America Bulletin, 82, 1079-1084(1971).
[30] [J], 12, 41-47(2001).
[31] RS-GIS based morphometrical and geological multi-criteria approach to the landslide susceptibility mapping in Gish River Basin, West Bengal, India[J]. Advances in Space Research, 63, 1253-1269(2019).
[32] et al[J], 69, 595-606(2014).
[33] et al[J], 36, 166-172(2014).
[34] et al[J], 52, 135-141(2007).
[36] Seismic landslide evolution and debris flow development: A case study in the Hongchun Catchment, Wenchuan area of China[J]. Engineering Geology for Society and Territory, 2, 445-449(2015).
[37] et alRainfall-triggered debris flows following the Wenchuan earthquake[J]. Bulletin of Engineering Geology and the Environment, 68, 187-194(2009).
[38] et alDisaster chains initiated by the Wenchuan earthquake[J]. Environmental Earth Sciences, 65, 975-985(2012).
[39] Mass movements triggered by the Wenchuan earthquake and management strategies of quake lakes[J]. International Journal of River Basin Management, 7, 391-402(2009).
[40] et al[J], 23, 317-323(2008).
[41] [J], 28, 341-349(2010).
[42] et alRelative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis[J]. Geomorphology, 257, 134-142(2016).
[43] Stream-profile analysis and stream-gradient index[J]. Journal Research of United States Geological Survey, 1, 421-429(1973).
[44] River profiles along the Himalayan arc as indicators of active tectonics[J]. Tectonophysics, 92, 335-367(1983).
[45] Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey)[J]. Geomorphology, 94, 401-418(2008).
[46] et alThe 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity[J]. Engineering Geology, 81, 65-83(2005).
[47] The role of floodplain topography in deriving basin discharge using passive microwave remote sensing[J]. Water Resources Research, 55, 1707-1716(2019).
[48] et al[J], 47, 1245-1252(2016).
[50] Precipitable water conversion rates over the Qinghai-Xizang (Tibet) Plateau: Changing characteristics with global warming[J]. Hydrological Processes, 26, 1509-1516(2012).
[51] et al[J], 34, 1203-1209(2019).
[52] et al[J], 36, 171-183(2018).
[53] et al[J], 34, 1496-1505(2019).
Get Citation
Copy Citation Text
Xinyue LIANG, Mengzhen XU, Liqun LYU, Yifei CUI, Fengbao ZHANG.
Received: Nov. 2, 2019
Accepted: --
Published Online: Jan. 27, 2021
The Author Email: LIANG Xinyue (liangxinyue17@mails.ucas.edu.cn)