Acta Optica Sinica, Volume. 43, Issue 10, 1027002(2023)

Damping of Collective Excitations in Two-Component Bose-Einstein Condensates Using Mean-Field Description

Reyza Tasheng1, Wei Wei1、***, Yu Zhou2、**, and Xiaodong Ma1、*
Author Affiliations
  • 1Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054, Xinjiang , China
  • 2School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu , China
  • show less
    References(74)

    [1] Pethick C, Smith H[M]. Bose-Einstein condensation in dilute gases(2008).

    [2] Dalfovo F, Minniti C, Pitaevskii L P. Frequency shift and mode coupling in the nonlinear dynamics of a Bose-condensed gas[J]. Physical Review A, 56, 4855-4863(1997).

    [3] Morgan S A, Choi S, Burnett K et al. Nonlinear mixing of quasiparticles in an inhomogeneous Bose condensate[J]. Physical Review A, 57, 3818-3829(1998).

    [4] Hechenblaikner G, Maragò O M, Hodby E et al. Observation of harmonic generation and nonlinear coupling in the collective dynamics of a Bose-Einstein condensate[J]. Physical Review Letters, 85, 692-695(2000).

    [5] Edwards M, Dodd R J, Clark C W et al. Properties of a Bose-Einstein condensate in an anisotropic harmonic potential[J]. Physical Review A, 53, R1950-R1953(1996).

    [6] Maragò O M, Hopkins S A, Arlt J et al. Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas[J]. Physical Review Letters, 84, 2056-2059(2000).

    [7] Al Khawaja U, Stoof H T C. Nonlinear coupling between scissors modes of a Bose-Einstein condensate[J]. Physical Review A, 65, 013605(2001).

    [8] Bijlsma M J, Stoof H T C. Collisionless modes of a trapped Bose gas[J]. Physical Review A, 60, 3973-3981(1999).

    [9] Stringari S. Collective excitations of a trapped Bose-condensed gas[J]. Physical Review Letters, 77, 2360-2363(1996).

    [10] Fetter A L. Ground state and excited states of a confined condensed Bose gas[J]. Physical Review A, 53, 4245-4249(1996).

    [11] Hu B, Huang G X, Ma Y L. Analytical solutions of the Bogoliubov-de Gennes equations for excitations of a trapped Bose-Einstein-condensed gas[J]. Physical Review A, 69, 063608(2004).

    [12] Ota M, Larcher F, Dalfovo F et al. Collisionless sound in a uniform two-dimensional Bose gas[J]. Physical Review Letters, 121, 145302(2018).

    [13] Mendonça J T, Terças H, Gammal A. Quantum landau damping in dipolar Bose-Einstein condensates[J]. Physical Review A, 97, 063610(2018).

    [14] Cappellaro A, Toigo F, Salasnich L. Collisionless dynamics in two-dimensional bosonic gases[J]. Physical Review A, 98, 043605(2018).

    [15] Zhou W Y, Wu Y J, Kou S P. Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice[J]. Chinese Physics B, 27, 050302(2018).

    [16] Wang Z H, Hou J X. Low-lying collective modes of a one-dimensional Bose gas with quantum fluctuation effect[J]. Journal of Low Temperature Physics, 199, 1324-1331(2020).

    [17] Kurkjian H, Ristivojevic Z. Damping of elementary excitations in one-dimensional dipolar Bose gases[J]. Physical Review Research, 2, 033337(2020).

    [18] Ristivojevic Z, Matveev K A. Decay of Bogoliubov excitations in one-dimensional Bose gases[J]. Physical Review B, 94, 024506(2016).

    [19] Sukhachov P O, Banerjee S, Balatsky A V. Bose-Einstein condensate of Dirac magnons: pumping and collective modes[J]. Physical Review Research, 3, 013002(2021).

    [20] Malakar M, Ray S, Sinha S et al. Phases and collective modes of bosons in a triangular lattice at finite temperature: a cluster mean field study[J]. Physical Review B, 102, 184515(2020).

    [21] Klimin S N, Tempere J, Kurkjian H. Collective excitations of superfluid Fermi gases near the transition temperature[J]. Physical Review A, 103, 043336(2021).

    [22] Karpov I, Argyropoulos T, Shaposhnikova E. Thresholds for loss of Landau damping in longitudinal plane[J]. Physical Review Accelerators and Beams, 24, 011002(2021).

    [23] Natu S S, Wilson R M. Landau damping in a collisionless dipolar Bose gas[J]. Physical Review A, 88, 063638(2013).

    [24] Liang Z X, Zhang Z D, Liu W M. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential[J]. Physical Review Letters, 94, 050402(2005).

    [25] Ji A C, Liu W M, Song J L et al. Dynamical creation of fractionalized vortices and vortex lattices[J]. Physical Review Letters, 101, 010402(2008).

    [26] Wang D S, Hu X H, Hu J P et al. Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity[J]. Physical Review A, 81, 025604(2010).

    [27] Ghasemian E, Tavassoly M K. Population dynamics of ultra-cold atoms interacting with radiation fields in the presence of inter-atomic collisions[J]. Chinese Optics Letters, 19, 122701(2021).

    [28] Zhou Y, Zhang Y, Wang Y et al. Dark soliton properties of nonlinear schrödinger equation with (2n+1)-th order nonlinearity[J]. Acta Optica Sinica, 40, 0927001(2020).

    [29] Ouyang X C, Hu Q Q, Ye M F et al. Development of integrated low-phase noise microwave frequency synthesizer for cold atomic gravimeter[J]. Chinese Journal of Lasers, 48, 2311001(2021).

    [30] Dou F Q, Zhang J H, Yang J et al. Multipath conversion and interference effect of ultracold bosonic heteronuclear tetra-atomic molecule[J]. Laser & Optoelectronics Progress, 58, 1102001(2021).

    [31] Li W W, Liu Q, Liang A A et al. Integrated design and realization of two-dimensional magneto-optical trap for ultra-cold atomic physics rack in space[J]. Chinese Journal of Lasers, 49, 1112001(2022).

    [32] Xia J H, Li F, Deng S J et al. Design and test of high-resolution imaging system for ultracold atoms[J]. Laser & Optoelectronics Progress, 59, 0222001(2022).

    [33] Maragò O, Hechenblaikner G, Hodby E et al. Temperature dependence of damping and frequency shifts of the scissors mode of a trapped Bose-Einstein condensate[J]. Physical Review Letters, 86, 3938-3941(2001).

    [34] Stamper-Kurn D M, Miesner H J, Inouye S et al. Collisionless and hydrodynamic excitations of a Bose-Einstein condensate[J]. Physical Review Letters, 81, 500-503(1998).

    [35] Chevy F, Bretin V, Rosenbusch P et al. Transverse breathing mode of an elongated Bose-Einstein condensate[J]. Physical Review Letters, 88, 250402(2002).

    [36] Jin D S, Matthews M R, Ensher J R et al. Temperature-dependent damping and frequency shifts in collective excitations of a dilute Bose-Einstein condensate[J]. Physical Review Letters, 78, 764-767(1997).

    [37] Garratt S J, Eigen C, Zhang J Y et al. From single-particle excitations to sound waves in a box-trapped atomic Bose-Einstein condensate[J]. Physical Review A, 99, 021601(2019).

    [38] Zaremba E, Griffin A, Nikuni T. Two-fluid hydrodynamics for a trapped weakly interacting Bose gas[J]. Physical Review A, 57, 4695-4698(1998).

    [39] Zaremba E, Nikuni T, Griffin A. Dynamics of trapped Bose gases at finite temperatures[J]. Journal of Low Temperature Physics, 116, 277-345(1999).

    [40] Jackson B, Zaremba E. Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates[J]. Physical Review Letters, 88, 180402(2002).

    [41] Jackson B, Zaremba E. Accidental suppression of Landau damping of the transverse breathing mode in elongated Bose-Einstein condensates[J]. Physical Review Letters, 89, 150402(2002).

    [42] Guilleumas M, Pitaevskii L P. Temperature-induced resonances and Landau damping of collective modes in Bose-Einstein condensed gases in spherical traps[J]. Physical Review A, 61, 013602(1999).

    [43] Das K, Bergeman T. Trends in resonance energy shifts and decay rates for Bose condensates in a harmonic trap[J]. Physical Review A, 64, 013613(2001).

    [44] Pitaevskii L P, Stringari S. Landau damping in dilute Bose gases[J]. Physics Letters A, 235, 398-402(1997).

    [45] Fedichev P O, Shlyapnikov G V, Walraven J T M. Damping of low-energy excitations of a trapped Bose-Einstein condensate at finite temperatures[J]. Physical Review Letters, 80, 2269-2272(1998).

    [46] Reidl J, Csordás A, Graham R et al. Shifts and widths of collective excitations in trapped Bose gases determined by the dielectric formalism[J]. Physical Review A, 61, 043606(2000).

    [47] Mizushima T, Ichioka M, Machida K. Beliaev damping and kelvin mode spectroscopy of a Bose-Einstein condensate in the presence of a vortex line[J]. Physical Review Letters, 90, 180401(2003).

    [48] Morgan S A, Rusch M, Hutchinson D A W et al. Quantitative test of thermal field theory for Bose-Einstein condensates[J]. Physical Review Letters, 91, 250403(2003).

    [49] Giorgini S. Damping in dilute Bose gases: a mean-field approach[J]. Physical Review A, 57, 2949-2957(1998).

    [50] Giorgini S. Collisionless dynamics of dilute Bose gases: role of quantum and thermal fluctuations[J]. Physical Review A, 61, 063615(2000).

    [51] Chen Y, Zhou Y, Ma X D. Landau damping of collective excitations in a homogeneous Bose-Einstein condensate[J]. Acta Optica Sinica, 42, 1627001(2022).

    [52] Ma X D, Ma Y L, Huang G X. Analytical calculations on Landau damping of collective modes in anisotropic Bose-Einstein condensates[J]. Physical Review A, 75, 013628(2007).

    [53] Ma X D, Zhou Y, Ma Y L et al. Landau damping of collective modes in a harmonically trapped Bose-Einstein condensate[J]. Chinese Physics, 15, 1871-1878(2006).

    [54] Ma X D, Ma Y L, Huang G X. Landau damping of collective modes in a disc-shaped Bose-Einstein condensate[J]. Chinese Physics Letters, 24, 616-619(2007).

    [55] Ma X D, Yang Z J, Lu J Z et al. Landau damping of collective mode in a quasi-two-dimensional repulsive Bose-Einstein condensate[J]. Chinese Physics B, 20, 070307(2011).

    [56] Yang Z J, Chai Z L, Li C X et al. Landau damping of collective mode in a quasi-one-dimensional repulsive Bose-Einstein condensate[J]. Communications in Theoretical Physics, 57, 789-794(2012).

    [57] Chai Z L, Zhou Y, Ma X D. Landau damping and frequency-shift of monopole mode in an elongated-rubidium Bose-Einstein condensate[J]. Acta Physica Sinica, 62, 130307(2013).

    [58] Rahmut A, Peng S Q, Ma X D. Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate[J]. Chinese Physics B, 23, 090311(2014).

    [59] Zhao J Y, Li C X, Ma X D. Landau damping and frequency-shift of (0, 0, 2) scissors mode in a disc-shaped Bose-Einstein condensate[J]. Acta Physica Sinica, 68, 230304(2019).

    [60] Peng S Q, Rahmut A, Ma X D. Landau damping and frequency-shift of a monopole mode in a spherical rubidium Bose-Einstein condensate[J]. Journal of Atomic and Molecular Physics, 32, 1018-1026(2015).

    [61] Öhberg P, Stenholm S. Hartree-Fock treatment of the two-component Bose-Einstein condensate[J]. Physical Review A, 57, 1272-1279(1998).

    [62] Shchedrin G, Jaschke D, Carr L D. Absence of Landau damping in driven three-component Bose-Einstein condensate in optical lattices[J]. Scientific Reports, 8, 11523(2018).

    [63] Moniri S M, Yavari H, Darsheshdar E. Effect of long-range 1/r interactions on the Landau damping in a Bose-Fermi mixture[J]. The European Physical Journal Plus, 131, 122-135(2016).

    [64] Moniri S M, Yavari H, Darsheshdar E. Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit[J]. Chinese Physics B, 25, 126701(2016).

    [65] Busch T, Cirac J I, Pérez-García V M et al. Stability and collective excitations of a two-component Bose-Einstein condensed gas: a moment approach[J]. Physical Review A, 56, 2978-2983(1997).

    [66] Alexandrov A S, Kabanov V V. Excitations and phase segregation in a two-component Bose-Einstein condensate with an arbitrary interaction[J]. Journal of Physics: Condensed Matter, 14, L327-L332(2002).

    [67] Graham R, Walls D. Collective excitations of trapped binary mixtures of Bose-Einstein condensed gases[J]. Physical Review A, 57, 484-487(1998).

    [68] Esry B D, Greene C H. Low-lying excitations of double Bose-Einstein condensates[J]. Physical Review A, 57, 1265-1271(1998).

    [69] Gordon D, Savage C M. Excitation spectrum and instability of a two-species Bose-Einstein condensate[J]. Physical Review A, 58, 1440-1444(1998).

    [70] Rodríguez M, Pedri P, Törmä P et al. Scissors modes of two-component degenerate gases: Bose-Bose and Bose-Fermi mixtures[J]. Physical Review A, 69, 023617(2004).

    [71] Kasamatsu K, Tsubota M, Ueda M. Quadrupole and scissors modes and nonlinear mode coupling in trapped two-component Bose-Einstein condensates[J]. Physical Review A, 69, 043621(2004).

    [72] Pu H, Bigelow N P. Collective excitations, metastability, and nonlinear response of a trapped two-species Bose-Einstein condensate[J]. Physical Review Letters, 80, 1134-1137(1998).

    [73] Bhattacherjee A B. Damping in two-component Bose gas[J]. Modern Physics Letters B, 28, 1450029(2014).

    [74] Yang D, Ma X D. Theoretical formula of HFB mean field for collective excitation damping in two-component BEC[J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 39, 17-28(2020).

    Tools

    Get Citation

    Copy Citation Text

    Reyza Tasheng, Wei Wei, Yu Zhou, Xiaodong Ma. Damping of Collective Excitations in Two-Component Bose-Einstein Condensates Using Mean-Field Description[J]. Acta Optica Sinica, 2023, 43(10): 1027002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Nov. 15, 2022

    Accepted: Jan. 11, 2023

    Published Online: May. 9, 2023

    The Author Email: Wei Wei (weiw@xjnu.edu.cn), Zhou Yu (yzhou@just.edu.cn), Ma Xiaodong (xdma07@aliyun.com)

    DOI:10.3788/AOS221984

    Topics