Advanced Photonics Nexus, Volume. 4, Issue 2, 026005(2025)
Adaptable deep learning for holographic microscopy: a case study on tissue type and system variability in label-free histopathology
[1] P. Ferraro, A. Wax, Z. Zalevsky. Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, 46(2011).
[4] T. Kreis. Handbook of Holographic Interferometry: Optical and Digital Methods(2006).
[5] V. Astratov, C. Hu, G. Popescu. Quantitative phase imaging: principles and applications. Label-Free Super-Resolution Microscopy, 1-24(2019).
[12] H. N. Chapman, K. A. Nugent. Coherent lensless X-ray imaging. Nat. Photonics, 4, 833-839(2010).
[13] R. W. Gerchberg. A practical algorithm for the determination of plane from image and diffraction pictures. Optik, 35, 237-246(1972).
[29] Z. Hong et al. Out-of-distribution detection in medical image analysis: a survey(2024).
[38] C. Villani. Optimal Transport: Old and New, 338(2009).
[46] K. Chaitanya et al. Contrastive learning of global and local features for medical image segmentation with limited annotations, 12546-12558(2020).
[48] S. A. Rizvi et al. Local contrastive learning for medical image recognition, 1236(2024).
[52] J. W. Goodman. Introduction to Fourier Optics(2005).
[54] T. Chen et al. A simple framework for contrastive learning of visual representations, 1597-1607(2020).
[67] V. Dumoulin, J. Shlens, M. Kudlur. A learned representation for artistic style(2016).
[70] X. Glorot, Y. Bengio. Understanding the difficulty of training deep feedforward neural networks, 249-256(2010).
[71] D. P. Kingma. Adam: a method for stochastic optimization(2014).
Get Citation
Copy Citation Text
Jiseong Barg, Chanseok Lee, Chunghyeong Lee, Mooseok Jang, "Adaptable deep learning for holographic microscopy: a case study on tissue type and system variability in label-free histopathology," Adv. Photon. Nexus 4, 026005 (2025)
Category: Research Articles
Received: Oct. 10, 2024
Accepted: Jan. 20, 2025
Published Online: Feb. 19, 2025
The Author Email: Jang Mooseok (mooseok@kaist.ac.kr)