Journal of Inorganic Materials, Volume. 38, Issue 10, 1176(2023)
[4] LI K Y, LIANG Y D, YANG H et al. New insight into the mechanism of enhanced photo-Fenton reaction efficiency for Fe-doped semiconductors: a case study of Fe/g-C3N4[J]. Catalysis Today, 371: 58(2020).
[8] CHU K, LIU Y P, LI Y B, GUO Y L et al. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation[J]. ACS Applied Materials & Interfaces, 7081(2020).
[11] SARANYA J, SUPANAN A, ORAPHAN T. Photocatalytic activity enhancement of g-C3N4/BiOBr in selective transformation of primary amines to imines and its reaction mechanism[J]. Chemical Engineering Journal, 124934(2020).
[13] YANG X L, QIAN F F, ZOU G J et al. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J]. Applied Catalysis B Environmental, 22(2016).
[14] LIU J, ZHANG T, WANG Z et al. Enhancement of visible light photocatalytic activities
[16] LIU Y J, LIU H X et al. A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation[J]. Applied Surface Science, 466:133(2019).
[18] SUN L L, LI Y F, JIAO X D et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction[J]. Chemical Society Reviews, 6592(2020).
[20] YANG J, SHI Q, ZHANG R et al. BiVO4 quantum tubes loaded on reduced graphene oxide aerogel as efficient photocatalyst for gaseous formaldehyde degradation[J]. Carbon, 138: 118(2018).
[21] TIAN S C, ZHANG X H, ZHANG Z H et al. Capacitive deionization with MoS2/g-C3N4 electrodes[J]. Desalination, 114(2020).
[22] LIU S S, ZHANG X B, HAO S et al. Preparation of MoS2 nanofibers by electrospinning[J]. Materials Letters, 223(2012).
[23] LI X L, LI Y D et al. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S.[J]. Chemistry-a European Journal, 22.
[24] ZHOU X S, LUO Z H, TAO P F et al. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 nanospheres modified porous g-C3N4[J]. Materials Chemistry and Physics, 1462(2014).
[25] YU J G, WANG S H, CHENG B et al. Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible- light photocatalytic H2-production activity[J]. Catalysis Science & Technology, 1782(2013).
[26] GUO B R, LIU B, LI C et al. S-scheme Ti0.7Sn0.3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation[J]. Journal of Environmental Chemical Engineering, 107(2022).
[28] HUANG Z F, SONG J, WANG X et al. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution[J]. Nano Energy, 308(2017).
[29] YU W, CHEN J, SHANG T et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production[J]. Applied Catalysis B: Environmental, 219: 693(2017).
[31] DONG F, ZHAO Z W, XIONG T et al.
Get Citation
Copy Citation Text
Rundong MA, Xiong GUO, Kaixuan SHI, Shengli AN, Ruifen WANG, Ruihua GUO.
Category:
Received: Feb. 25, 2023
Accepted: --
Published Online: Mar. 6, 2024
The Author Email: Ruifen WANG (wrf2008@imust.edu.cn)