Optical Communication Technology, Volume. 48, Issue 3, 13(2024)
Modulation format identification method based on joint residual network and Bottleneck Transformers
[1] [1] SAIF W S, ESMAIL M A, RAGHEB A R, et al. Machine learning techniques for optical performance monitoring and modulation format identification: a survey [J]. IEEE Communications Surveys & Tutorials, 2020, 2(4): 525-543.
[2] [2] NAG A, TORNATORE M, MUKHERJEE B. Optical network design with mixed line rates and multiple modulation formats[J]. Journal of Light-wave Technology, 2010, 28(4): 466-475.
[3] [3] JIANG J, ZHANG Q, XIN X, et al. Blind modulation format identification based on principal component analysis and singular value decomposition[J]. Electronics, 2022, 11(4): 612-627.
[4] [4] ASLAM M W, ZHU Z, NANDI A K. Automatic modulation classification using combination of genetic programming and KNN[J]. IEEE Transactions on Wireless Communications, 2012, 11(8): 2742-2750.
[5] [5] ZHAO Y, SHI C, WANG D, et al. Modulation format identification using random forest[J]. IEEE Photonics Technology Letters, 2019, 31 (11):853-856.
[6] [6] SHI J, HONG S, CAI C, et al. Deep learning-based automatic modulation recognition method in the presence of phase offset [J]. IEEE Access,2020, 8: 42841-42847.
[7] [7] ZENG Y, ZHANG M, HAN F, et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8(3): 929-932.
[8] [8] FAN X, XIE Y, REN F, et al. Joint optical performance monitoring and modulation format/bit-rate identification by CNN-based multi-task learning[J]. IEEE Photonics Journal, 2018, 10(5): 7906712-1-7906712-12.
[9] [9] FAN Z, WANG L, REN F, et al. Feature fusion-based multi-task ConvNet for simultaneous optical performance monitoring and bit-rate/modulation format identification[J]. IEEE Access, 2019, 7: 126709-126719.
[10] [10] ZHANG W, CUI D, LOU S. Training images generation for CNN based automatic modulation classification[J]. IEEE Access, 2021, 9: 62916-62925.
[11] [11] CHANG X, LI Z, ZHANG Q, et al. Modulation format identification for coherent optical communication systems based on long short-term memory networks [C]//IEEE. Proceeding of International Conference on Optical Communications and Networks(ICOCN). Shenzhen: IEEE, 2022: 1-3
[12] [12] KUMAR Y, SHEORAN M, JAJOO G, et al. Automatic modulation classification based on constellation density using deep learning[J]. IEEE Communications Letters, 2020, 24(6): 1275-1278.
[13] [13] QI P, ZHOU X, ZHENG S, et al. Automatic modulation classification based on deep residual networks with multimodal information[J]. IEEE Transactions on Cognitive Communications & Networking, 2020, 7(1): 21-33.
[14] [14] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition [C]//IEEE/CVF. IEEE Conference on Computer Vision and Pattern Recognition, IEEE/CVF, 2021: 16514-16524.
Get Citation
Copy Citation Text
LIANG Kun, LIU Zhansheng. Modulation format identification method based on joint residual network and Bottleneck Transformers[J]. Optical Communication Technology, 2024, 48(3): 13
Received: Sep. 9, 2023
Accepted: --
Published Online: Aug. 2, 2024
The Author Email: