Opto-Electronic Engineering, Volume. 52, Issue 1, 240238(2025)

Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re-identification

Zhongmin Liu1,*... Fujun Yang1 and Wenjin Hu2 |Show fewer author(s)
Author Affiliations
  • 1Department of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • 2College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu 730030, China
  • show less
    Figures & Tables(13)
    Overall framework of the MSFINet model
    FSA mechanism
    Framework of the ReFIM
    Structure of PCBN module
    Partial convolution ablation experiment results of the PCBN module
    Performance of different train epochs on mainstream datasets
    Ranking list of retrieval results with different models
    • Table 1. Ablation experimental results of FSA,PCBN, and ReFIM on mainstream datasets (Unit: %)

      View table
      View in Article

      Table 1. Ablation experimental results of FSA,PCBN, and ReFIM on mainstream datasets (Unit: %)

      MethodDuke-to-MarketMarket-to-DukeMarket-to-MSMT
      mAPRank-1Rank-5mAPRank-1Rank-5mAPRank-1Rank-5
      “—”代表结果未显示
      SECRET[5]79.892.367.180.324.349.9
      FSA81.192.896.568.383.589.424.551.863.8
      PCBN80.792.597.467.180.688.724.350.963.5
      ReFIM80.092.997.267.280.489.224.651.763.9
      FSA+PCBN81.292.497.166.080.489.224.751.964.1
      FSA+ReFIM81.392.897.464.179.088.225.352.364.7
      PCBN+ReFIM82.793.098.067.680.788.224.552.564.3
      FSA +PCBN+ReFIM82.993.797.468.782.789.826.654.767.5
    • Table 2. Experiments results of the CDC and FIM ablation in the ReFIM module (Unit: %)

      View table
      View in Article

      Table 2. Experiments results of the CDC and FIM ablation in the ReFIM module (Unit: %)

      MethodDuke-to-MarketMarket-to-DukeMarket-to-MSMT
      mAPRank-1Rank-5mAPRank-1Rank-5mAPRank-1Rank-5
      “—”代表结果未显示
      SECRET[5]79.892.367.180.324.349.9
      CDC79.892.596.965.479.788.824.450.964.1
      FIM79.891.897.166.180.189.524.351.463.7
      ReFIM80.092.997.267.280.489.224.651.763.9
    • Table 3. Partial convolution efficiency ablation experiments of the PCBN module

      View table
      View in Article

      Table 3. Partial convolution efficiency ablation experiments of the PCBN module

      MethodEvaluation metrics
      Params/MFLOPs/GLatency/ms
      Bottleneck (SECRET)[5]0.52.223
      Conv1_spling0.52.020
      Conv2_spling0.41.717
      Conv3_spling0.31.512
    • Table 4. Efficiency ablation experiment results of the FSA (Unit: %)

      View table
      View in Article

      Table 4. Efficiency ablation experiment results of the FSA (Unit: %)

      MethodDuke-to-MarketMarket-to-DukeMarket-to-MSMT
      mAPRank-1Rank-5mAPRank-1Rank-5mAPRank-1Rank-5
      “—”代表结果未显示
      SECRET[5]79.892.367.180.324.349.9
      SE80.092.396.362.481.887.023.348.362.5
      CBAM79.892.696.465.382.288.124.451.263.3
      CA67.787.095.363.280.586.422.550.662.9
      FSA81.192.896.568.383.589.424.551.863.8
    • Table 5. Experimental results of different parts in the FSA module

      View table
      View in Article

      Table 5. Experimental results of different parts in the FSA module

      MethodEvaluation metrics
      Horizontal squeezeVertical squeezeDetail enhancementParams/MFLOPs/GLatency/ms
      1.31.643
      1.21.544
      1.41.847
      1.11.339
    • Table 6. Performance comparison among different models on mainstream datasets (Unit: %)

      View table
      View in Article

      Table 6. Performance comparison among different models on mainstream datasets (Unit: %)

      ModelsDuke-to-MarketMarket-to-DukeMarket-to-MSMT
      mAPRank-1Rank-5mAPRank-1Rank-5mAPRank-1Rank-5
      “—”代表结果未显示
      HHL[30]31.462.278.827.246.961.0
      ECN[31]43.075.187.640.463.375.810.215.240.4
      UDL[32]44.776.888.941.364.977.0
      PDA-Net[32-33]47.675.286.345.163.277.0
      PCB-PAST[34]54.678.454.372.4
      SSG[3]58.380.090.053.473.080.613.231.6
      MMCL[35]60.484.492.851.472.482.915.140.8
      SNR[36]61.782.858.176.3
      ECN++[37]63.884.192.854.474.083.715.240.4
      AD-Cluster[38]68.386.794.454.172.682.5
      MMT[4]71.287.794.965.178.088.822.949.263.1
      MEB-NET[39]76.089.996.066.179.688.3
      GCL+ (JVTC+)[40]76.591.696.368.382.689.427.153.866.9
      UNRN[41]78.191.996.169.182.090.725.352.464.7
      SECRET[5] (baseline)79.892.367.180.324.349.9
      HQP[42]80.392.396.968.082.690.223.649.862.4
      DHCL[43]81.592.897.267.381.189.3
      MSFINet (ours)82.993.797.468.782.789.826.654.767.5
    Tools

    Get Citation

    Copy Citation Text

    Zhongmin Liu, Fujun Yang, Wenjin Hu. Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re-identification[J]. Opto-Electronic Engineering, 2025, 52(1): 240238

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Oct. 11, 2024

    Accepted: Dec. 18, 2024

    Published Online: Feb. 21, 2025

    The Author Email: Liu Zhongmin (刘仲民)

    DOI:10.12086/oee.2025.240238

    Topics