Journal of the Chinese Ceramic Society, Volume. 50, Issue 9, 2414(2022)
In-Situ Formation of TiB2 in B4C Ceramics and Its Strengthening Mechanism on Mechanical Properties
[1] [1] DOMNICH V, REYNAUD S, HABER R A, et al. Boron carbide: structure, properties, and stability under stress[J]. J Am Ceram Soc, 2011, 94(11): 3605-3628.
[2] [2] SONG N, GAO Z, ZHANG Y, et al. B4C nanoskeleton enabled, flexible lithium-sulfur batteries[J]. Nano Energy, 2019, 58: 30-39.
[4] [4] THEVENOT F. Boron carbide-A comprehensive review[J]. J Eur Ceram Soc, 1990, 6(4): 205-225.
[5] [5] SURI A K, SUBRAMANIAN C, SONBER J K, et al. Synthesis and consolidation of boron carbide: a review[J]. Int Mater Rev, 2010, 55(1): 4-40.
[6] [6] ZHANG W. A review of tribological properties for boron carbide ceramics[J]. Pro Mater Sci, 2021, 116: 100718.
[7] [7] YUAN Y, YE T, WU Y, et al. Mechanical and ballistic properties of graphene platelets reinforced B4C ceramics: Effect of TiB2 addition[J]. Mater Sci Eng A, 2021, 817: 141294.
[9] [9] KIM H W, KOH Y H, KIM H E. Densification and mechanical properties of B4C with Al2O3 as a sintering aid[J]. J Am Ceram Soc, 2000, 83(11): 2863-2865.
[10] [10] SO S M, CHOI W H, KIM K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering[J]. Ceram Int, 2020, 46(7): 9575-9581.
[11] [11] SUN J, NIU B, REN L, et al. Densification and mechanical properties of boron carbide prepared via spark plasma sintering with cubic boron nitride as an additive[J]. J Eur Ceram Soc, 2020, 40(4): 1103-1110.
[12] [12] SIGL L S, KLEEBE H J. Microcracking in B4C-TiB2 composites[J]. J Am Ceram Soc, 1995, 78(9): 2374-2380.
[13] [13] HE Q, WANG A, LIU C, et al. Microstructures and mechanical properties of B4C-TiB2-SiC composites fabricated by ball milling and hot pressing[J]. J Eur Ceram Soc, 2018, 38(7): 2832-2840.
[14] [14] YAMADA S, HIRAO K, YAMAUCHI Y, et al. High strength B4C-TiB2 composites fabricated by reaction hot-pressing[J], J Eur Ceram Soc. 2003, 23(7): 1123-1130.
[15] [15] GUO W, WANG A, HE Q, et al. Microstructure and mechanical properties of B4C-TiB2 ceramic composites prepared via a two-step method[J]. J Eur Ceram Soc, 2021, 41(14): 6952-6961.
[16] [16] RUBINK W S, AGEH V, LIDE H, et al. Spark plasma sintering of B4C and B4C-TiB2 composites: Deformation and failure mechanisms under quasistatic and dynamic loading[J]. J Eur Ceram Soc, 2021, 41(6): 3321-3332.
[17] [17] HE R, JING L, QU Z, et al. Effects of ZrB2 contents on the mechanical properties and thermal shock resistance of B4C-ZrB2 ceramics[J]. Mater Design, 2015, 71(15): 56-61.
[18] [18] ZHANG M, REN X, QU Z, et al. Preparation of ZrB2-MoSi2 high oxygen resistant coating using nonequilibrium state powders by self-propagating high-temperature synthesis[J]. J Adv Ceram, 2021, 10(5): 1011-1024.
[19] [19] DEMIRSKYI D, VASYLKIV O. Analysis of the high-temperature flexural strength behavior of B4C-TaB2 eutectic composites produced by in situ spark plasma sintering[J]. Mater Sci Eng A, 2017, 697(14): 71-78.
[20] [20] TU R, LI N, LI Q, et al. Effect of microstructure on mechanical, electrical and thermal properties of B4C-HfB2 composites prepared by arc melting[J]. J Eur Ceram Soc, 2016, 36(16): 3929-3937.
[21] [21] LIU D, FU Q, CHU Y. Molten salt synthesis, formation mechanism, and oxidation behavior of nanocrystalline HfB2 powders[J]. J Adv Ceram, 2020, 9(1): 35-44.
[22] [22] MUNRO R G. Material properties of titanium diboride[J]. J Res Natl Inst Stan Technol, 2000, 105(5): 709-720.
[23] [23] BECKER M Z, SHOMRAT N, TSUR Y. Recent advances in mechanism research and methods for electric-field-assisted sintering of ceramics[J]. Adv Mater, 2018, 30(41): 1706369.
[24] [24] LEVIN L, FRAGE N, DARIEL M P. The effect of Ti and TiO2 additions on the pressureless sintering of B4C[J]. Metall Mater Trans A, 1999, 30(12): 3201-3210.
[25] [25] WACHTMAN J B, CANNON W R, MATTHEWSON M J. Mechanical properties of ceramics[M]: John Wiley & Sons, 2009: 303-313.
[26] [26] SKOROKHOD V, KRSTIC V. High strength-high toughness B4C-TiB2 composites[J]. J Mater Sci Lett, 2000, 19(3): 237-239.
[27] [27] LIU Z, DENG X, LI J, et al. Ran, Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C-TiB2 composites[J]. Ceram Int, 2018, 44(17): 21415-21420.
[28] [28] HUANG S G, VANMEENSEL K, VAN DER BIEST O, et al. In situ synthesis and densification of submicrometer-grained B4C-TiB2 composites by pulsed electric current sintering [J]. J Eur Ceram Soc, 2011, 31(4): 637-644.
[29] [29] FAILLA S, MELANDRI C, ZOLI L, et al. Hard and easy sinterable B4C-TiB2-based composites doped with WC [J]. J Eur Ceram Soc, 2018, 38(9): 3089-3095.
[30] [30] KHAJEHZADEH M, EHSANI N, BAHARVANDI H R, et al. Thermodynamical evaluation, microstructural characterization and mechanical properties of B4C-TiB2 nanocomposite produced by in-situ reaction of nano-TiO2 [J]. Ceram Int, 2020, 46(17): 26970-26984.
[31] [31] ZHU Y, CHENG H, WANG Y, et al. Effects of carbon and silicon on microstructure and mechanical properties of pressureless sintered B4C/TiB2 composites [J]. J Alloys Compd, 2019, 772(25): 537-545.
[32] [32] WANG S, YUAN J, HAN W, et al. Microstructure and mechanical properties of B4C-TiB2 composite ceramic fabricated by reactive spark plasma sintering [J]. Int J Refract Met Hard Mater, 2020, 92: 105307.
[33] [33] LIU Z, WANG D, LI J, et al. Densification of high-strength B4C-TiB2 composites fabricated by pulsed electric current sintering of TiC-B mixture [J]. Scr Mater, 2017, 135: 15-18.
[34] [34] HWANG C, DIPIETRO S, XIE K Y, et al. Small amount TiB2 addition into B4C through sputter deposition and hot pressing [J]. J Am Ceram Soc, 2019, 102(8): 4421-4426.
[35] [35] REN D, DENG Q, WANG J, et al. Synthesis and properties of conductive B4C ceramic composites with TiB2 grain network [J]. J Am Ceram Soc, 2018, 101(9): 3780-3786.
Get Citation
Copy Citation Text
YAO Wankai, YAN Junbing, LI Xiangcheng, CHEN Ping'an, ZHU Yingli, ZHU Boquan. In-Situ Formation of TiB2 in B4C Ceramics and Its Strengthening Mechanism on Mechanical Properties[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2414
Category:
Received: Apr. 14, 2022
Accepted: --
Published Online: Dec. 26, 2022
The Author Email: Wankai YAO (1039347850@qq.com)