Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 255(2024)
Research Progress on Solar-Driven Steam-Electricity System
[1] [1] LI Z, WANG C, SU J, et al. Fast-growing field of interfacial solar steam generation: Evolutional materials, engineered architectures, and synergistic applications[J]. Sol RRL, 2019, 3(3): 1800206.
[2] [2] ASKARI I B, AMERI M. Solar Rankine Cycle (SRC) powered by Linear Fresnel solar field and integrated with Multi Effect Desalination (MED) system[J]. Renew Energy, 2018, 117: 52-70.
[3] [3] HAN J, XING W, YAN J, et al. Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination[J]. Adv Fiber Mater, 2022, 4(5): 1233-1245.
[4] [4] SHARON H, REDDY K. A review of solar energy driven desalination technologies[J]. Renew Sustain Energy Rev, 2015, 41: 1080-1118.
[5] [5] MARINHO B A, CRISTóV-O R O, DJELLABI R, et al. Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light[J]. Appl Catal B, 2017, 203: 18-30.
[6] [6] Best Research-Cell Efficiencies chart[EB/OL]. (2023-09-21) [2022-12-30]. https://www.nrel.gov/pv/cell-efficiency.html.
[7] [7] LU J Y, RAZA A, NOORULLA S, et al. Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles[J]. Adv Opt Mater, 2017, 5(8): 1700222.
[8] [8] ZHOU L, TAN Y, JI D, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Sci Adv, 2016, 2(4): e1501227.
[9] [9] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nat Energy, 2018, 3(12): 1031-1041.
[10] [10] CHOI S U S, EASTMAN J. Enhancing thermal conductivity of fluids with nanoparticles[C]//United States: Argonne National Lab, 1995: 6-7.
[11] [11] MAHIAN O, KIANIFAR A, KALOGIROU S A, et al. A review of the applications of nanofluids in solar energy[J]. Int J Heat Mass Transf, 2013, 57(2): 582-594.
[12] [12] SAIDUR R, LEONG K Y, MOHAMMED H A. A review on applications and challenges of nanofluids[J]. Renew Sustain Energy Rev, 2011, 15(3): 1646-1668.
[13] [13] HAN D, MENG Z, WU D, et al. Thermal properties of carbon black aqueous nanofluids for solar absorption[J]. Nanoscale Res Lett, 2011, 6(1): 457.
[14] [14] HORDY N, RABILLOUD D, MEUNIER J L, et al. High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors[J]. Sol Energy, 2014, 105: 82-90.
[15] [15] MERCATELLI L, SANI E, ZACCANTI G, et al. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers[J]. Nanoscale Res Lett, 2011, 6(1): 282.
[16] [16] LUKIANOVA-HLEB E Y, LAPOTKO D O. Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles[J]. Nano Lett, 2009, 9(5): 2160-2166.
[17] [17] LAPOTKO D. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications[J]. Nanomedicine, 2009, 4(7): 813-845.
[18] [18] NEUMANN O, URBAN A S, DAY J, et al. Solar vapor generation enabled by nanoparticles[J]. ACS Nano, 2013, 7(1): 42-49.
[19] [19] TAYLOR R A, PHELAN P E, OTANICAR T, et al. Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser[J]. Appl Phys Lett, 2009, 95(16): 161907.
[20] [20] PAYNE E K, SHUFORD K L, PARK S, et al. Multipole plasmon resonances in gold nanorods[J]. J Phys Chem B, 2006, 110(5): 2150-2154.
[21] [21] LIU L, DAO T, KODIYATH R, et al. Plasmonic Janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range[J]. Adv Funct Mater, 2014, 24(48): 7754-7762.
[22] [22] NEUMANN O, FERONTI C, NEUMANN A D, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles[J]. Proc Natl Acad Sci USA, 2013, 110(29): 11677-11681.
[23] [23] NEUMANN O, NEUMANN A D, SILVA E, et al. Nanoparticle- mediated, light-induced phase separations[J]. Nano Lett, 2015, 15(12): 7880-7885.
[24] [24] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: Beyond gold and silver[J]. Adv Mater, 2013, 25(24): 3264-3294.
[25] [25] MODINE F A, MAJOR R W, HAYWOOD T W, et al. Optical properties of tantalum carbide from the infrared to the near ultraviolet[J]. Phys Rev B, 1984, 29(2): 836.
[26] [26] GULER U, NAIK G V, BOLTASSEVA A, et al. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications[J]. Appl Phys B, 2012, 107(2): 285-291.
[27] [27] GULER U, SUSLOV S, KILDISHEV A V, et al. Colloidal plasmonic titanium nitride nanoparticles: Properties and applications[J]. Nanophotonics, 2015, 4(3): 269-276.
[28] [28] TAYLOR R, COULOMBE S, OTANICAR T, et al. Small particles, big impacts: A review of the diverse applications of nanofluids[J]. J Appl Phys, 2013, 113(1): 011301.
[29] [29] YU W, XIE H. A review on nanofluids: Preparation, stability mechanisms, and applications[J]. J Nanomater, 2012:435873.
[30] [30] WEN D S, DING Y L. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids)[J]. J Thermophys Heat Transf, 2004, 18(4): 481-485.
[31] [31] WANG Z, LIU Y, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10(16): 3234-3239.
[32] [32] GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nat Commun, 2014, 5: 4449.
[33] [33] ITO Y, TANABE Y, HAN J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization[J]. Adv Mater, 2015, 27(29): 4302-4307.
[34] [34] SAJADI S M, FAROKHNIA N, IRAJIZAD P, et al. Flexible artificially-networked structure for ambient/high pressure solar steam generation[J]. J Mater Chem A, 2016, 4(13): 4700-4705.
[35] [35] HE W, ZHOU L, WANG M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Sci Bull, 2021, 66(14): 1472-1483.
[36] [36] XU N, HU X, XU W, et al. Mushrooms as efficient solar steam-generation devices[J]. Adv Mater, 2017, 29(28): 1606762.
[37] [37] LI X, XU W, TANG M, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proc Natl Acad Sci USA, 2016, 113(49): 13953-13958.
[38] [38] HU X, XU W, ZHOU L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one aun[J]. Adv Mater, 2017, 29(5): 1604031.
[39] [39] REN H, TANG M, GUAN B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Adv Mater, 2017, 29(38): 1702590.
[40] [40] YANG Y, ZHAO R, ZHANG T, et al. Graphene-based standalone solar energy converter for water desalination and purification[J]. ACS Nano, 2018, 12(1): 829-835.
[41] [41] ZHAO F, ZHOU X, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nat Nanotechnol, 2018, 13(6): 489-495.
[42] [42] GUO Y, ZHAO F, ZHOU X, et al. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation[J]. Nano Lett, 2019, 19(4): 2530-2536.
[43] [43] GUO Y, ZHAO X, ZHAO F, et al. Tailoring surface wetting states for ultrafast solar-driven water evaporation[J]. Energy Environ Sci, 2020, 13(7): 2087-2095.
[44] [44] LI J, WANG X, LIN Z, et al. Over 10 kg·m-2·h-1 evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 928-937.
[45] [45] WANG Y, WANG C, SONG X, et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. J Mater Chem A, 2018, 6(3): 963-971.
[46] [46] ZENG Y, YAO J, HORRI B A, et al. Solar evaporation enhancement using floating light-absorbing magnetic particles[J]. Energy Environ Sci, 2011, 4(10): 4074-4078.
[47] [47] LI Y, GAO T, YANG Z, et al. 3D-Printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J]. Adv Mater, 2017, 29(26): 1700981.
[48] [48] ZHU M, LI Y, CHEN F, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Adv Energy Mater, 2018, 8(4): 1701028.
[49] [49] JIANG F, LIU H, LI Y, et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Appl Mater Interfaces, 2018, 10(1): 1104-1112.
[50] [50] YANG Y, ZHAO H, YIN Z, et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation[J]. Mater Horiz, 2018, 5(6): 1143-1150.
[51] [51] GUO D, YANG X. Highly efficient solar steam generation of low cost TiN/bio-carbon foam[J]. Sci China Mater, 2019, 62(5): 711-718.
[52] [52] REN P, YANG X. Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J]. Sol RRL, 2018, 2(4): 1700233.
[53] [53] REN P, LI J, ZHANG X, et al. Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material[J]. Mater Today Energy, 2020, 18: 100546.
[54] [54] CUI L, ZHANG P, XIAO Y, et al. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture[J]. Adv Mater, 2018, 30(22): e1706805.
[55] [55] XU N, ZHU P C, SHENG Y, et al. Synergistic tandem solar electricity-water generators[J]. Joule, 2020, 4: 347-358.
[56] [56] CHENG P, WANG H C, ZHU Y, et al. Transparent hole-transporting frameworks: A unique strategy to design high-performance semitransparent organic photovoltaics[J]. Adv Mater, 2020, 32(39): e2003891.
[57] [57] JI Q, LI N, WANG S, et al. Synergistic solar-powered water-electricity generation via rational integration of semitransparent photovoltaics and interfacial steam generators[J]. J Mater Chem A, 2021, 9(37): 21197-21208.
[58] [58] ZHU L, DING T, GAO M, et al. Photothermal conversion: Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation[J]. Adv Energy Mater, 2019, 9(22): 190025.
[59] [59] CAO P, ZHAO L, YANG Z, et al. Carbon nanotube network-based solar-thermal water evaporator and thermoelectric module for electricity generation[J]. ACS Appl Nano Mater, 2021, 4(9): 8906-8912.
[60] [60] LI X, MIN X, LI J, et al. Storage and recycling of interfacial solar steam enthalpy[J]. Joule, 2018, 2(11): 2477-2484.
[61] [61] ZHU L, GAO M, PEH C K N, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J]. Adv Energy Mater, 2018, 8(16): 1702149.
[62] [62] GAO F, LI W, WANG X, et al. A self-sustaining pyroelectric nanogenerator driven by water vapor[J]. Nano Energy, 2016, 22: 19-26.
[63] [63] ZHOU H, YAMADA T, KIMIZUKA N. Supramolecular thermo- electrochemical cells: Enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization[J]. J Am Chem Soc, 2016, 138(33): 10502-10507.
[64] [64] SHEN Q, NING Z, FU B, et al. An open thermo-electrochemical cell enabled by interfacial evaporation[J]. J Mater Chem A, 2019, 7(11): 6514-6521.
[65] [65] YANG P, LIU K, CHEN Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy Environ Sci, 2017, 10(9): 1923-1927.
[66] [66] WANG H, XIE W, YU B, et al. Simultaneous solar steam and electricity generation from synergistic salinity-temperature gradient[J]. Adv Energy Mater, 2021, 11(18): 2100481.
[67] [67] ZHOU L, LIU D, WANG J, et al. Triboelectric nanogenerators: Fundamental physics and potential applications[J]. Friction, 2020, 8(3): 481-506.
[68] [68] LIN S, CHEN X, WANG Z L. The tribovoltaic effect and electron transfer at a liquid-semiconductor interface[J]. Nano Energy, 2020, 76: 105070.
[69] [69] CHEN X, JIANG C H, SONG Y H, et al. Integrating hydrovoltaic device with triboelectric nanogenerator to achieve simultaneous energy harvesting from water droplet and vapor[J]. Nano Energy, 2022, 100: 107495.
[70] [70] DAO V D, VU N H, THI DANG H L, et al. Recent advances and challenges for water evaporation-induced electricity toward applications[J]. Nano Energy, 2021, 85: 105979.
[71] [71] XUE G, XU Y, DING T, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nat Nanotechnol, 2017, 12(4): 317-321.
[72] [72] ZHANG Z, LI X, YIN J, et al. Emerging hydrovoltaic technology[J]. Nat Nanotechnol, 2018, 13(12): 1109-1119.
[73] [73] BHATTACHARJEE S. DLS and zeta potential-What they are and what they are not-[J]. J Control Release, 2016, 235: 337-351.
[74] [74] WANG X, LIN F, WANG X, et al. Hydrovoltaic technology: From mechanism to applications[J]. Chem Soc Rev, 2022, 51(12): 4902-4927.
[75] [75] ZHANG S, FANG S, LI L, et al. Geometry effect on water-evaporation-induced voltage in porous carbon black film[J]. Sci China Technol Sci, 2021, 64(3): 629-634.
[76] [76] SUN Z Z, HAN C L, GAO S W, et al. Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator[J]. Nat Commun, 2022, 13(1): 5077.
[77] [77] TAN J, FANG S, ZHANG Z, et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation[J]. Nat Commun, 2022, 13: 3643.
[78] [78] ZHOU X, ZHANG W, ZHANG C, et al. Harvesting electricity from water evaporation through microchannels of natural wood[J]. ACS Appl Mater Interfaces, 2020, 12(9): 11232-11239.
[79] [79] ZHANG Z, ZHENG Y, JIANG N, et al. Electricity generation from water evaporation through highly conductive carbonized wood with abundant hydroxyls[J]. Sustainable Energy Fuels, 2022, 6(9): 2249-2255.
[80] [80] HU Q, MA Y, REN G, et al. Water evaporation-induced electricity with geobacter sulfurreducens biofilms[J]. Sci Adv, 2022, 8(15): eabm8047.
[81] [81] LIU X, UEKI T, GAO H, et al. Microbial biofilms for electricity generation from water evaporation and power to wearables[J]. Nat Commun, 2022, 13(1): 4369.
[82] [82] LI Z, MA X, CHEN D, et al. Polyaniline-coated MOFs nanorod arrays for efficient evaporation-driven electricity generation and solar steam desalination[J]. Adv Sci, 2021, 8(7): 2004552.
[83] [83] MA Q, HE Q, YIN P, et al. Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation[J]. Adv Mater, 2020, 32(37): e2003720.
[84] [84] QIN Y, WANG Y, SUN X, et al. Constant electricity generation in nanostructured silicon by evaporation-driven water flow[J]. Angew Chem Int Ed Engl, 2020, 59(26): 10619-10625.
[85] [85] YU F, LIU G, CHEN Z, et al. All-weather freshwater and electricity simultaneous generation by coupled solar energy and convection[J]. ACS Appl Mater Interfaces, 2022, 14(35): 40082-40092.
[86] [86] CHI J, LIU C, CHE L, et al. Harvesting water-evaporation-induced electricity based on liquid-solid triboelectric nanogenerator[J]. Adv Sci, 2022, 9(17): e2201586.
[87] [87] ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Sci Adv, 2019, 5(6): eaaw5484.
[88] [88] TANG J, ZHENG T, SONG Z, et al. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels[J]. ACS Appl Mater Interfaces, 2020, 12(16): 18504-18511.
[89] [89] GUAN Q F, HAN Z M, LING Z C, et al. Sustainable wood-based hierarchical solar steam generator: A biomimetic design with reduced vaporization enthalpy of water[J]. Nano Lett, 2020, 20(8): 5699-5704.
[90] [90] ZHANG X F, WU G, YANG XC. MoS2 nanosheet-carbon foam composites for solar steam generation[J]. ACS Appl Nano Mater, 2020, 3(10): 9706-9714.
[91] [91] YANG X C, XU Z J, ZHANG X F. TiN nanoparticles/OMS-2 nanorods/carbonized wood composites for simultaneous solar water evaporation and abatement of volatile organic compound from undrinkable water[J]. Mater Today Sustain, 2023, 24: 100492.
Get Citation
Copy Citation Text
XU Zijie, YANG Xiuchun, WANG Yufan. Research Progress on Solar-Driven Steam-Electricity System[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 255
Received: May. 22, 2022
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Xiuchun YANG (yangxc@tongji.edu.cn)
CSTR:32186.14.