Journal of Terahertz Science and Electronic Information Technology , Volume. 21, Issue 1, 22(2023)

Research and prospect of terahertz wireless and wired fusion communication technology

ZHANG Jiao1,2, TONG Weidong1, ZHU Min1,2、*, HUA Bingchang2, CAI Yuancheng1,2, LEI Mingzheng2, and YU Jianjun2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(30)

    [1] [1] AKYILDIZ I, JORNEL J, HAN C. TeraNets: ultra-broadband communication networks in the terahertz band[J]. Wireless Communications, 2014,21(4):130-135. doi:10.1109/MWC.2014.6882305.

    [5] [5] KLEINE-OSTMANN T,NAGATSUMA T. A review on terahertz communications research[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2011,32(2):143-171.

    [6] [6] YU X,IYAMOTO T,OBATA K,et al. Direct terahertz communications with wireless and fiber links[C]// 2019 44th International Conference on Infrared,Millimeter,and Terahertz Waves(IRMMW-THz). Paris,France:IEEE, 2019:1-2.

    [7] [7] YU X, HOSODA Y, MIYAMOTO T, et al. Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides[J]. Electronics Letters, 2019,55(7):398-400.

    [8] [8] YU J, LI X, TANG X, et al. High-speed signal transmission at W-band over dielectric-coated metallic hollow fiber[J]. IEEE Transactions on Microwave Theory & Techniques, 2015,63(6):1836-1842. doi:10.1109/TMTT.2015.2425888.

    [11] [11] SHAMS H,SHAO T,FICE M J,et al. 100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source[J]. IEEE Photonics Journal, 2015,7(3):1-11. doi:10.1109/JPHOT.2015.2438437.

    [12] [12] LO M C, JIA S, KONG D, et al. Foundry-fabricated dual-DFB PIC injection-locked to optical frequency comb for high-purity THz generation[C]// Optical Fiber Communication Conference. San Diego,CA,USA:IEEE, 2019:1-3.

    [13] [13] YU J,LI K,CHEN Y,et al. Terahertz wave generation based on optical frequency comb and single Mach-Zehnder modulator[J]. IEEE Photonics Journal, 2020,12(1):1-8. doi:10.1109/JPHOT.2020.2966374.

    [14] [14] MEZZAPESA F P,GARRASI K,SCHMIDT J,et al. Semiconductor THz frequency combs exploiting solution processed graphene [C]// 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz). Buffalo, NY, USA: IEEE, 2020:1-1.

    [15] [15] MORANT M, GONZALEZ-GUERRERO L, RENAUD C C, et al. Remote photonic THz generation using an optical frequency comb and multicore fiber[J]. Journal of Lightwave Technology, 2021,39(24):7621-7627. doi:10.1109/JLT.2021.3115084.

    [16] [16] JOHANSSON J F,WHYBORN N D. The diagonal horn as a sub-millimeter wave antenna[J]. IEEE Transactions on Microwave Theory and Techniques, 1992,40(5):795-800. doi:10.1109/22.137380.

    [17] [17] TREVER Bird. Terahertz radio systems:the next frotier[J]. CSIRO ICT Centre,Mersfield, 2003(5):1-11.

    [18] [18] NAGATSUMA T, HIRATA A, SATO Y, et al. Sub-terahertz wireless communications technologies[C]// 18th International Conference on Applied Electromagnetics and Communications. Dubrovnik:IEEE, 2004:1-4.

    [19] [19] GIANNINI V, BERRIER A, MAIER S A, et al. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies[J]. Optics Express, 2010,18(3):2797-2807.

    [20] [20] BERRIER A,ALBELLA P,POYLI M A,et al. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators[J]. Optics Express, 2012,20(5):5052-5060.

    [21] [21] CIZHE,FANG,YAN,et al. Localized plasmon resonances for black phosphorus bowtie nanoantennas at terahertz frequencies[J]. Optics Express, 2018,26(21):27683-27693.

    [24] [24] SHEN W, DU J, SUN L, et al. Low-latency and high-speed hollow-core fiber optical interconnection at 2 micron waveband[J]. Journal of Lightwave Technology, 2020,38(15):3874-3882. doi:10.1109/JLT.2020.2982971.

    [25] [25] SETTI V,VINCETTI L,ARGYROS A. Flexible tube lattice fibers for terahertz applications[J]. Optics Express, 2013,21(3):3388-3399.

    [26] [26] CRUZ A L S,SERRAO V A,BARBOSA C L,et al. 3D printed hollow core fiber with negative curvature for terahertz applications [J]. Journal of Microwaves,Optoelectronics and Electromagnetic Applications, 2015(14):45-53.

    [27] [27] YANG J, ZHAO J, GONG C, et al. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure[J]. Optics Express, 2016,24(20):22454-22460.

    [28] [28] VAN P L D,GORECKI J,FOKOUA E N,et al. 3D printed polymer antiresonant waveguides for short-reach terahertz applications [J]. Applied Optics, 2018,57(14):3953-3958.

    [29] [29] YANG S, SHENG X, ZHAO G, et al. Anti-deformation low loss double pentagon nested terahertz hollow core fiber[J]. Optical Fiber Technology, 2020(56):102199.

    [30] [30] REEVES W, KNIGHT J C, RUSSELL P, et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers[J]. Optics Express, 2002,10(14):609-613.

    [31] [31] TSURUDA K, FUJITA M, NAGATSUMA T. Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab[J]. Optics Express, 2015,23(25):31977.

    [32] [32] YU X,YAMADA R,KIM J Y,et al. Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication[C]// 2018 Progress in Electromagnetics Research Symposium. Toyama, Japan: IEEE, 2018: 599-605. doi:10.23919/PIERS.2018.8597616.

    [33] [33] GAO W,YU X,FUJITA M,et al. Effective-medium-cladded dielectric waveguides for terahertz waves[J]. Optics Express, 2019, 27(26):38721-38734.

    [34] [34] YANG Y,YAMAGAMI Y,YU X,et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 2020(14): 446-451. doi:10.1038/s41566-020-0618-9.

    [35] [35] CHEN K W,ZHAO Z Q,ZHANG X W,et al. Characterization of gas absorption modules based on flexible mid.infrared hollow waveguides[J]. Sensors, 2019,19(7):1698. doi10.3390/s19071698.

    [36] [36] PENG C D,ZHENG J Z,HE M H,et al. Development of flexible mid-infrared light delivery system with bioprobe for beam control[J]. Optics and Lasers in Engineering, 2020,134(9):106261. doi:10.1016/j.optlaseng.2020.106261.

    [37] [37] HE M H,ZENG J F,ZHANG X,et al. Transmission and imaging characteristics of flexible gradually tapered waveguide at 0.3 THz[J]. Optics Express, 2021,29(6):8430-8440. doi:10.1364/OE.419506.

    CLP Journals

    [1] YANG Jingxuan, LI Wei, CHENG Limin. Design of new terahertz photonic crystal fiber for Orbital Angular Momentum modes transmission[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(12): 1417

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Jiao, TONG Weidong, ZHU Min, HUA Bingchang, CAI Yuancheng, LEI Mingzheng, YU Jianjun. Research and prospect of terahertz wireless and wired fusion communication technology[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(1): 22

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 22, 2021

    Accepted: --

    Published Online: Mar. 14, 2023

    The Author Email: Min ZHU (minzhu@seu.edu.cn)

    DOI:10.11805/tkyda2021430

    Topics