Opto-Electronic Advances, Volume. 6, Issue 9, 230012(2023)

Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal

Zhen Hao, Biqiang Jiang*, Yuxin Ma, Ruixuan Yi, Xuetao Gan**, and Jianlin Zhao
Author Affiliations
  • Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • show less
    References(40)

    [1] PA Franken, AE Hill, CW Peters, G Weinreich. Generation of optical harmonics. Phys Rev Lett, 118-119(1961).

    [2] RL Carman, RY Chiao, PL Kelley. Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification. Phys Rev Lett, 1281-1283(1966).

    [3] YG Zuo, WT Yu, C Liu, X Cheng, RX Qiao et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat Nanotechnol, 987-991(2020).

    [4] BB Wang, YF Ji, LP Gu, L Fang, XT Gan et al. High-efficiency second-harmonic and sum-frequency generation in a silicon nitride microring integrated with few-layer GaSe. ACS Photonics, 1671-1678(2022).

    [5] ML Zhu, MZ Zhong, X Guo, YS Wang, ZH Chen et al. Efficient and anisotropic second harmonic generation in few-layer SnS film. Adv Opt Mater, 2101200(2021).

    [6] B Krause, D Mishra, JY Chen, C Argyropoulos, T Hoang. Nonlinear strong coupling by second-harmonic generation enhancement in plasmonic nanopatch antennas. Adv Opt Mater, 2200510(2022).

    [7] Z Hao, BQ Jiang, YX Ma, RX Yi, HY Jin et al. Strain-controlled phase matching of optical harmonic generation in microfibers. Phys Rev Appl, L031002(2023).

    [8] J Ren, H Lin, XR Zheng, WW Lei, D Liu et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci, 210013(2022).

    [9] C L Li, J C Liu, F M Zhang et al. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology. Opto-Electron Eng, 210438(2022).

    [10] D Javůrek, Jr J Peřina. Analytical model of surface second-harmonic generation. Sci Rep, 4679(2019).

    [11] Y Fujii, BS Kawasaki, KO Hill, DC Johnson. Sum-frequency light generation in optical fibers. Opt Lett, 48-50(1980).

    [12] MA Gouveia, T Lee, R Ismaeel, M Ding, NGR Broderick et al. Second harmonic generation and enhancement in microfibers and loop resonators. Appl Phys Lett, 201120(2013).

    [13] JM Ménard, F Köttig, PSJ Russell. Broadband electric-field-induced LP01 and LP02 second harmonic generation in Xe-filled hollow-core PCF. Opt Lett, 3795-3798(2016).

    [14] JH Yuan, XZ Sang, Q Wu, GY Zhou, F Li et al. Generation of second-harmonics near ultraviolet wavelengths from femtosecond pump pulses. IEEE Photon Technol Lett, 1719-1722(2016).

    [15] K Chen, X Zhou, X Cheng, RX Qiao, Y Cheng et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat Photonics, 754-759(2019).

    [16] R Kashyap. Phase-matched periodic electric-field-induced second-harmonic generation in optical fibers. J Opt Soc Am B, 313-328(1989).

    [17] A Canagasabey, C Corbari, AV Gladyshev, F Liegeois, S Guillemet et al. High-average-power second-harmonic generation from periodically poled silica fibers. Opt Lett, 2483-2485(2009).

    [18] H Nasu, H Okamoto, K Kurachi, J Matsuoka, K Kamiya et al. Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions. J Opt Soc Am B, 644-649(1995).

    [19] RW Boyd. Nonlinear Optics(2008).

    [20] ZQ Yu, N Zhang, JX Wang, ZJ Dai, C Gong et al. 0.35% THz pulse conversion efficiency achieved by Ti: sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate. Opto-Electron Adv, 210065(2022).

    [21] XJ Lin, QC Feng, Y Zhu, SH Ji, B Xiao et al. Diode-pumped wavelength-switchable visible Pr3+: YLF laser and vortex laser around 670 nm. Opto-Electron Adv, 210006(2021).

    [22] V Raghunathan, Y Han, O Korth, NH Ge, EO Potma. Rapid vibrational imaging with sum frequency generation microscopy. Opt Lett, 3891-3893(2011).

    [23] K Liao, Y Chen, ZC Yu, XY Hu, XY Wang et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv, 200060(2021).

    [24] BQ Jiang, Z Hao, YF Ji, YG Hou, RX Yi et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light Sci Appl, 63(2020).

    [25] GP Agrawal. Nonlinear Fiber Optics(2019).

    [26] JM Ménard, PSJ Russell. Phase-matched electric-field-induced second-harmonic generation in Xe-filled hollow-core photonic crystal fiber. Opt Lett, 3679-3682(2015).

    [27] Z Hao, BQ Jiang, YG Hou, CY Li, RX Yi et al. Continuous-wave pumped frequency upconversions in an InSe-integrated microfiber. Opt Lett, 733-736(2021).

    [28] YX Ma, BQ Jiang, YS Guo, PW Zhang, TL Cheng et al. Suspended-core fiber with embedded GaSe nanosheets for second harmonic generation. Opt Express, 32438-32446(2022).

    [29] JH Chen, J Tan, GX Wu, XJ Zhang, F Xu et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci Appl, 8(2019).

    [30] Z Hao, YX Ma, BQ Jiang, YG Hou, AL Li et al. Second harmonic generation in a hollow-core fiber filled with GaSe nanosheets. Sci China Inf Sci, 162403(2022).

    [31] TL Cheng, WQ Gao, H Kawashima, DH Deng, MS Liao et al. Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber. Opt Lett, 2145-2147(2014).

    [32] EY Zhu, L Qian, LG Helt, M Liscidini, JE Sipe et al. Phase-matching with a twist: second-harmonic generation in birefringent periodically poled fibers. J Opt Soc Am B, 2410-2415(2010).

    [33] KR Allakhverdiev, MÖ Yetis, S Özbek, TK Baykara, EY Salaev. Effective nonlinear GaSe crystal. optical properties and applications. Laser Phys, 1092-1104(2009).

    [34] E Bringuier, A Bourdon, N Piccioli, A Chevy. Optical second-harmonic generation in lossy media: application to GaSe and InSe. Phys Rev B, 16971-16982(1994).

    [35] X Zhou, JX Cheng, YB Zhou, T Cao, H Hong et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc, 7994-7997(2015).

    [36] RL Sutherland. Handbook of Nonlinear Optics(2003).

    [37] C Ciret, K Alexander, N Poulvellarie, M Billet, CM Arabi et al. Influence of longitudinal mode components on second harmonic generation in III-V-on-insulator nanowires. Opt Express, 31584-31593(2020).

    [38] J Lægsgaard. Theory of surface second-harmonic generation in silica nanowires. J Opt Soc Am B, 1317-1324(2010).

    [39] N Singh, M Raval, A Ruocco, MR Watts. Broadband 200-nm second-harmonic generation in silicon in the telecom band. Light Sci Appl, 17(2020).

    [40] F Liao, JX Yu, ZQ Gu, ZY Yang, T Hasan et al. Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Sci Adv, eaax7398(2019).

    Tools

    Get Citation

    Copy Citation Text

    Zhen Hao, Biqiang Jiang, Yuxin Ma, Ruixuan Yi, Xuetao Gan, Jianlin Zhao. Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal[J]. Opto-Electronic Advances, 2023, 6(9): 230012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 1, 2023

    Accepted: May. 7, 2023

    Published Online: Nov. 15, 2023

    The Author Email:

    DOI:10.29026/oea.2023.230012

    Topics