Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 2056(2022)

Research Progress on Biomass-Derived Carbonaceous Composite Microwave Absorbing Materials

WU Zhihong1,*... YAO Cheng1, MENG Zhenzhen1, WANG Yao1, GUO Xinyu1, Zhou Huafeng2 and WANG Yubin3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(78)

    [1] [1] LI Y, LIU X F, NIE X Y, et al. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material[J]. Adv Funct Mater, 2019, 29(10): 1807624.

    [2] [2] XIANG Z, SONG Y M, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2018, 142: 20-31.

    [3] [3] DENG B W, XIANG Z, XIONG J, et al. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption[J]. Nanomicro Lett, 2020, 12(1): 55.

    [4] [4] BIBI M, ABBAS S M, AHMAD N, et al. Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band[J]. Compos B Eng, 2017, 114: 139-148.

    [5] [5] WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C, 2011, 115(29): 14025- 14030.

    [6] [6] ZHAO B, ZHAO W Y, SHAO G, et al. Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic- wave absorption capabilities[J]. ACS Appl Mater Interfaces, 2015, 7(23): 12951-12960.

    [7] [7] XU Q, WANG L X, ZHU H L, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon[J]. Nanoscale, 2017, 9(22): 7408-7418.

    [8] [8] VEJPRAVOVA J, PACAKOVA B, KALBAC M. Magnetic impurities in single-walled carbon nanotubes and graphene: a review[J]. Analyst, 2016, 141(9): 2639-2656.

    [9] [9] QIAO J, ZHANG X, XU D M, et al. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption[J]. Chem Eng J, 2019, 380(17): 122591.

    [10] [10] WEI Y S, YUE J L, TANG X Z, et al. Enhanced magnetic and microwave absorption properties of FeCo-SiO2 nanogranular film functionalized carbon fibers fabricated with the radio frequency magnetron method[J]. Appl Surf Sci, 2018, 428: 296-303.

    [11] [11] LIU Y, LAI J, SHI J F. Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites[J]. New Carbon Mater, 2020, 35(4): 428-435.

    [12] [12] SU S H, YU J H, LIU X G, et al. Fe nanoparticles embedded in polyaniline-derived carbon fibers as broad bandwidth microwave absorbers for GHz electromagnetic wave[J]. Solid State Commun, 2021: 114400.

    [13] [13] ZHANG D Q, YANG X Y, CHENG J Y, et al. Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4 /PANI nanocomposites[J]. J Nanomater, 2013(5): 134.

    [14] [14] FENG J F, HOU Y H, WANG Y C, et al. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption[J]. ACS Appl Mater Interfaces, 2017, 9(16): 14103-14111.

    [15] [15] WU Z C, TIAN K T, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Appl Mater Interfaces, 2018, 10(13): 11108.

    [16] [16] LIU P B, GAO S, WANG Y, et al. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption[J]. Compos B Eng, 2020, 202: 108406.

    [17] [17] ZHANG Z, ZHAO H Q, GU W H, et al. A biomass derived porous carbon for broadband and lightweight microwave absorption[J]. Sci Rep, 2019, 9(1): 18617.

    [18] [18] LIU Q L, ZHANG D, FAN T. T Electromagnetic wave absorption properties of porous carbon/Co nanocomposites[J]. Appl Phys Lett, 2008, 93(1): 401.

    [19] [19] XU H L, YIN X W, LI M H, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon, 2018, 132: 343-351.

    [20] [20] TANG Z E, LIM S, PANG Y L, et al. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review[J]. Renew Sust Energ Rev, 2018, 92: 235-253.

    [22] [22] XI J B, ZHOU E Z, LIU Y J, et al. Wood-based straightway channel structure for high performance microwave absorption[J]. Carbon, 2017, 124: 492-498.

    [23] [23] LEI L J, WANG Y H, ZHANG Z X, et al. Transformations of biomass, its derivatives, and downstream chemicals over ceria catalysts[J]. ACS Catal, 2020, 10(15): 8788-8814.

    [24] [24] XIONG Y, XU L L, YANG C X, et al. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption[J]. J Mater Chem A, 2020, 8(36): 18863-18871.

    [25] [25] ZHAO H Q, CHENG Y, MA J N, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber[J]. Chem Eng J, 2018, 339: 432-441.

    [26] [26] PAN F, LIU Z C, DENG B W, et al. Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance[J]. Nanomicro Lett, 2021, 13(1): 43.

    [27] [27] CHENG Y, ZHAO H Q, LV H L, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications[J]. Adv Electron Mater, 2019, 6(1): 1900796.

    [28] [28] WU Z H, MENG Z Z, YAO C, et al. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption[J]. Mater Chem Phys, 2022, 275: 125246.

    [29] [29] ZHANG H J, LI H L, LI X T, et al. Influence of pyrolyzing atmosphere on the catalytic activity and structure of Co-based catalysts for oxygen reduction reaction[J]. Electrochim Acta, 2014, 115: 1-9.

    [31] [31] ZHOU X F, JIA Z R, FENG A L, et al. Dependency of tunable electromagnetic wave absorption performance on morphology- controlled 3D porous carbon fabricated by biomass[J]. Compos Commun, 2020, 21(14): 100404.

    [32] [32] GUO Z Z, REN P G, ZHANG F D, et al. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption[J]. J Colloid Interface Sci, 2022, 610: 1077-1087.

    [33] [33] SUN X X, WANG Z, WANG S S, et al. Ultrabroad-band and low-frequency microwave absorption based on activated waxberry metamaterial[J]. Chem Eng J, 2021, 422: 130142.

    [34] [34] NAN H Y, LUO F, JIA H Y, et al. The effect of temperature on structure and permittivity of carbon microspheres as efficient absorbent prepared by facile and large-scale method[J]. Carbon, 2021, 185: 650-659.

    [35] [35] LI F Y, XIA H, NI Q Q. Egg-white-derived magnetic carbon flakes with enhanced microwave absorption properties[J]. Synth Met, 2021, 278(39): 116827.

    [36] [36] ZHANG X, CAI L, XIANG Z, et al. Hollow CuS microflowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions[J]. Carbon, 2021, 184: 514-525.

    [37] [37] LIU T S, LIU N, GAI L X, et al. Hierarchical carbonaceous composites with dispersed Co species prepared using the inherent nanostructural platform of biomass for enhanced microwave absorption[J]. Microporous Mesoporous Mater, 2020, 302: 110210.

    [38] [38] ZHAO H Q, CHENG Y, LV H L, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142: 245-253.

    [39] [39] QIANG R, FENG S B, CHEN Y, et al. Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption[J]. J Colloid Interface Sci, 2022, 606: 406-423.

    [40] [40] HOU C X, CHENG J Y, ZHANG H B, et al. Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band[J]. Appl Surf Sci, 2022, 577: 151939.

    [41] [41] TIAN Y, ESTEVEZ D, WEI H J, et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption[J]. Chem Eng J, 2021, 421: 129781.

    [42] [42] PEYMANFAR R, GHORBANIAN-GEZAFORODI S. Functionalized carbonized monarch butterfly wing scales (FCBW) ornamented by β-Co(OH)2 nanoparticles: an investigation on its microwave, magnetic, and optical characteristics[J]. Nanotechnology, 2021, 32(19): 195201.

    [43] [43] WANG H Y, WU X F, WANG Q Y, et al. NiO nanosheets on pine pollen-derived porous carbon: Construction of interface to enhance microwave absorption[J]. J Mater Sci Mater Electron, 2020, 27(3): 25656-25667.

    [44] [44] HAGHIGHI MOOD S, HOSSEIN GOLFESHAN A, TABATABAEI M, et al. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment[J]. Renew Sust Energ Rev, 2013, 27: 77-93.

    [46] [46] ASLAM M A, DING W, REHMAN S U, et al. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance[J]. Appl Surf Sci, 2021, 543: 148785.

    [47] [47] SATYAMURTHY P, JAIN P, BALASUBRAMANYA R H, et al. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis[J]. Carbohydr Polym, 2011, 83(1): 122-129.

    [48] [48] WEI Y, LIU H J, LIU S C, et al. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption[J]. Compos Commun, 2018, 9: 70-75.

    [49] [49] WANG S P, LI Q S, HU K, et al. A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption[J]. Appl Surf Sci, 2020, 544: 148891.

    [50] [50] DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon, 2021, 179: 566-578.

    [51] [51] HU P T, DONG S, LI X T, et al. A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties[J]. J Mater Chem C, 2019, 7(30): 9219-9228.

    [52] [52] JI C, LIU Y, XU J, et al. Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree[J]. J Alloys Compd, 2022, 890: 161834.

    [53] [53] GU J J, WANG Z, SU H L, et al. Morphology genetic materials templated from nature species[J]. Mater China, 2015, 27(3): 464-478.

    [54] [54] FAN Y Q, LI Y H, YAO Y L, et al. Hierarchically porous carbon sheets/Co nanofibers derived from corncobs for enhanced microwave absorbing properties[J]. Appl Surf Sci, 2020, 534: 147510.

    [55] [55] ZHAO H Q, CHENG Y, ZHANG Z, et al. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties[J]. Carbon, 2021, 173: 501-511.

    [56] [56] PANG X, YE L D, LI X J, et al. Magnetic core-shell structure in-situ encapsulated in bamboo-derived carbon skeleton for efficient microwave absorption[J]. J Alloys Compd, 2021, 888: 161510.

    [57] [57] WANG Y Y, ZHOU Z H, ZHU J L, et al. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption [J]. Compos B Eng, 2021, 220: 108985.

    [58] [58] GUO L, AN Q D, XIAO Z Y, et al. Constructing stacked structure of S-doped carbon layer encapsulated MoO2 NPs with dominated dielectric loss for microwave absorption[J]. ACS Sustain Chem Eng, 2019, (7): 19546-19555.

    [59] [59] SAGHATFOROUSH L A, SANATI S, HASANZADEH M. Synthesis, characterization and electrochemical properties of Co3O4 nanostructures by using cobalt hydroxide as a precursor[J]. Res Chem Intermed, 2015, 41(7): 4361-4372.

    [60] [60] XU R X, XU D W, ZENG Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chem Eng J, 2022, 427: 130796.

    [61] [61] XIE S, JI Z J, ZHU L C, et al. Recent progress in electromagnetic wave absorption building materials[J]. J Build Eng, 2020, 27: 100963.

    [62] [62] LIU W W, LI H, ZENG Q P, et al. Fabrication of ultralight three- dimensional graphene networks with strong electromagnetic wave absorption properties[J]. J Mater Chem A, 2015, 3(7): 3739-3747.

    [63] [63] QIAO M T, LEI X F, MA Y, et al. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave- absorption material[J]. Nano Res, 2018, 11(3): 1500-1519.

    [64] [64] ZENG X J, CHENG X Y, YU R H, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon, 2020, 168: 606-623.

    [65] [65] ZHANG Y, WANG B C, NIE A, et al. Carbonaceous photonic crystals prepared by high-temperature/hydrothermal carbonization as high- performance microwave absorbers[J]. J Mater Sci, 2019, 54(11): 14343-14353.

    [66] [66] ZHOU X F, JIA Z R, FENG A L, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber[J]. Compos B Eng, 2020: 107980.

    [67] [67] CHE R C, PENG L M, DUAN X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv Mater, 2004, 16(5): 401-405.

    [68] [68] WU Z C, JIN C, YANG Z Q, et al. Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance[J]. Carbon, 2022, 189: 530-538.

    [69] [69] LIU L Y, YANG S, HU H Y, et al. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons[J]. ACS Sustain Chem Eng, 2019, 7(1): 1228-1238.

    [70] [70] LIU W, TAN S J, YANG Z H, et al. Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss[J]. Carbon, 2018, 138: 143-153.

    [71] [71] REHMAN S, WANG J M, LUO Q H, et al. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties[J]. Chem Eng J, 2019, 373: 122-130.

    [72] [72] GAO S, YANG S H, WANG H Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon, 2020, 162: 438-444.

    [73] [73] ZHU T, CHANG S C, SONG Y F, et al. Novel PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance[J]. Chem Eng J, 2019, 373: 755-766.

    [74] [74] LIU P B, GAO S, WANG Y, et al. Core-shell CoNi@Graphitic carbon decorated on B,N-Co doped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Appl Mater Interfaces, 2019, 11(28): 25624-25635.

    [75] [75] WANG Y L, YANG S H, WANG H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber[J]. Carbon, 2020, 167: 485-494.

    [76] [76] GUAN H T, WANG H Y, ZHANG Y L, et al. Microwave absorption performance of Ni(OH)2 decorating biomass crbon composites from jackfruit peel[J]. Appl Surf Sci, 2018, 447: 261-268.

    [77] [77] WU F, YANG K, LI Q, et al. Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption[J]. Carbon, 2021, 173: 918-931.

    [78] [78] WANG Y, GAO X, ZHOU H W, et al. Fabrication of biomass-derived carbon decorated with NiFe2O4 particles for broadband and strong microwave absorption[J]. Powder Technol, 2019, 345: 370-378.

    [79] [79] WANG H G, MENG F B, LI J Y, et al. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption[J]. ACS Sustain Chem Eng, 2018, 6(9): 11801-11810.

    [80] [80] ZHANG X, DONG Y Y, PAN F, et al. Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high-performance microwave absorbers[J]. Carbon, 2021, 177: 332-343.

    [81] [81] YANG X, PANG X N, CAO M, et al. Efficient microwave absorption induced by hierarchical pores of reed-derived ultralight carbon materials[J]. Ind Crops Prod, 2021, 171: 113814.

    Tools

    Get Citation

    Copy Citation Text

    WU Zhihong, YAO Cheng, MENG Zhenzhen, WANG Yao, GUO Xinyu, Zhou Huafeng, WANG Yubin. Research Progress on Biomass-Derived Carbonaceous Composite Microwave Absorbing Materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 2056

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 14, 2021

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email: Zhihong WU (zhihong@xauat.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics