Journal of Inorganic Materials, Volume. 37, Issue 12, 1321(2022)
Curie Temperature Prediction of BiFeO3-PbTiO3-BaTiO3 Solid Solution Based on Machine Learning
[6] K MURPHY. Machine learning:a probabilistic perspective, 71(2012).
[7] F PEDREGOSA, G VAROQUAUX, A GRAMFORT et al. Scikit- learn: machine learning in python.
[12] G RANDHAWA, K HILL, L KARI. ML-DSP: Machine learning with digital signal processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels.
[21] R OUYANG, S CURTAROLO, E AHMETCIK et al. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates.
[24] Z NING. Dielectric, ferroelectric, piezoelectric and aging properties of BiFeO3-PbTiO3-BaTiO3 high temperature piezoelectric ceramics. Shanghai: Master Thesis, Shanghai University(2020).
[25] T TU. Fabrication of BF-PT-BT high temperature piezoelectric ceramics and sensors. Shanghai: Master Thesis, Shanghai University(2017).
[27] K BUTLER, J FROST, J SKELTON et al. Computational materials design of crystalline solids.
[29] E UUSI, J MALM, N IMAMURA et al. Characterization of RMnO3 (R=Sc, Y, Dy-Lu): high-pressure synthesized metastable perovskites and their hexagonal precursor phases.
Get Citation
Copy Citation Text
Zhixiang JIAO, Fanhao JIA, Yongchen WANG, Jianguo CHEN, Wei REN, Jinrong CHENG. Curie Temperature Prediction of BiFeO3-PbTiO3-BaTiO3 Solid Solution Based on Machine Learning[J]. Journal of Inorganic Materials, 2022, 37(12): 1321
Category: EDITORIAL
Received: Feb. 17, 2022
Accepted: --
Published Online: Jan. 12, 2023
The Author Email: JIAO Zhixiang (jzxxxzj@163.com)