Journal of Inorganic Materials, Volume. 38, Issue 2, 125(2023)

Current Status and Development Trend of Cold Sintering Process

Jingjing FENG*... Youran ZHANG, Mingsheng MA, Yiqing LU and Zhifu LIU |Show fewer author(s)
Figures & Tables(16)
Quaternary diagram of sintering techniques[13]
Schematic diagram of densification mechanism of CSP[20,38]
SEM images of Li2MoO4 before and after cold sintering[20]
SEM images of cold sintered ZnO ceramics with different solvents[54]
Cold sintered BaTiO3 ceramics obtained by holding at 300 ℃ for 12 h[56]
Cold sintered BaTiO3 ceramics obtained by holding at 150 ℃ for 15 h[57]
Schematic diagrams of ceramic-polymer composites[34]
Electrical properties of three composites prepared by cold sintering process[19]
Cold sintered ZnO-PTFE composites[62]
Cold sintered BaTiO3-PTFE composites[57]
Cold sintered ZnO and LAGP ceramic samples with large size[69]
Obvious inhomogeneity of cold sintered ZnO ceramics[69]
Reactive hydrothermal liquid phase densification process[72]
  • Table 1. Definition table of sintering techniques[13-14]

    View table
    View in Article

    Table 1. Definition table of sintering techniques[13-14]

    TechniqueName (Abbreviation)Definition
    TraditionalsinteringConventional sintering (ConvS)Thermal sintering at heating rate of 1-10 ℃/min
    Two step sintering (TSS)Thermal sintering divided in two steps (heating; cooling and densification)
    Fast firing (FF)Rapid sintering with short soaking times and high heating rates
    Sinter forging (SF)Sintering in presence of uniaxial pressure in die-less configuration
    Hot pressing (HP)Sintering at high temperature and in presence of uniaxial pressure
    Hydrothermal hot pressing (HIP)Sintering at high temperature and in presence of hydrostatic pressure
    Liquid phase sinteringCold sintering process (CSP)Sintering at T<400 ℃ in presence of solvent and uniaxial pressure
    Cold hydrostatic consolidation (CHC)Sintering at room temperature in presence of solvent and hydrostatic pressure
    Hydrothermal hot pressing (HHP)Pressure-assisted sintering in hydrothermal conditions
    Hydrothermal reaction sintering (HRS)Sintering of oxide ceramics in presence of supercritical water
    Water vapor-assisted sintering (WVAS)Conventional sintering in a humid atmosphere
    Reactive hydrothermal liquid-phase densification (rHLPD)Sintering at low temperature assisted by hydrothermal reaction
    Flash-likeFlash sintering (FS)Rapid sintering at low furnace temperature in presence of electric field
    Thermally insulated flash sintering (TIFS)Flash sintering where the sample is thermally insulated from the environment
    Flash sinterforging (FSF)Flash sintering in presence of uniaxial pressure in die-less configuration
    Sliding electrodes flash sintering (SEFS)Flash sintering where the electrodes are in relative motion with respect to the sample
    Water-assisted flash sintering (WAFS)Flash sintering in humid atmosphere
    Contactless flash sintering (CLFS)Flash sintering with electrodes in non-contact mode
    SPS-likeSpark plasma sintering (SPS)Sintering in presence of a DC electric potential and uniaxial pressure
    Deformable punch spark plasma sintering (DPSPS)Spark plasma sintering at very high pressure (1000-2000 MPa)
    Flash spark plasma sintering (FSPS)Hybrid technique of flash sintering and spark plasma sintering
    Cool spark plasma sintering (CSPS)Spark plasma sintering at T<400 ℃ and high pressure (300-600 MPa)
    High pressure spark plasma sintering (HPSPS)Spark plasma sintering at high pressure (102-103 MPa)
    Sacrificial material spark plasma sintering (SMPS)Spark plasma sintering with a sacrificial die to form samples with complex shapes
    OthersUltrafast high-temperature sintering (UHS)Rapid sintering at heating rate of 103-104 ℃/min
    Cold sintering (CS)Sintering of ductile materials at high pressure and low temperature
    Microwave sintering (MWS)Densification assisted by heating with an electromagnetic radiation
    Induction sintering (IS)Densification assisted by heating with an induction system
    Capacitor discharge sintering (CDS)Rapid sintering with electric energy supplied by capacitor discharge
  • Table 2. Ceramic materials prepared by CSP[29,38,50]

    View table
    View in Article

    Table 2. Ceramic materials prepared by CSP[29,38,50]

    Binary compound Ternary compound Quaternary compound Quinary compound
    MoO3Li2CO3LiFePO4LiAl0.5Ge1.5(PO4)3
    WO3CsSO4LiCoPO4Li0.5xBi1-0.5xMoxV1-xO4
    V2O3Li2MoO4KH2PO4(Bi0.95Li0.05)(V0.9Mo0.1)O4
    V2O5Na2Mo2O7Ca5(PO4)3(OH)Li1.5Al0.5Ge1.5(PO4)3
    ZnOK2Mo2O7(LiBi)0.5MoO4-
    Bi2O3ZnMoO4CsH2PO4-
    Fe2O3K2MoO4InGaZnO4-
    SiO2Bi2Mo2O9K0.5Na0.5NbO3-
    CsBrGd2(MoO4)3LiFePO4-
    MgOLi2WO4Li2Mg3TiO6-
    PbTeNa2WO4Na0.5Bi0.5MoO4-
    Bi2Te3LiVO3Na0.5Bi0.5TiO3-
    NaClBiVO4YBa2Cu3O7-x-
    ZnTeAgVO3--
    AgINa2ZrO3--
    CuClBaTiO3--
    ZrF4NaNO2--
    ZrO2Mg2P2O7--
    Al2O3BaMoO4--
    CeO2Cs2WO4--
    MnONaxCO2O4--
    SnOCa3Co4O9--
    TiO2KPO3--
    MoS2Al2SiO5--
    -Ca3Co4O9--
    -CaCO3--
    -BaFe12O19--
    -ZrW2O8--
    -NaNbO3--
    -SrTiO3--
  • Table 3. Composites prepared by CSP

    View table
    View in Article

    Table 3. Composites prepared by CSP

    Ceramic-polymer compositeSolventProcessing conditionsRelative densityApplicationRef.
    Li2MoO4-PTFEDeionized (DI) water120 ℃, 350 MPa, 15-20 min96%-97%Dielectrics[19]
    Li1.5Al0.5Ge1.5(PO4)3/PVDF-HFPDI water120 ℃, 400 MPa, 60 min80%-86%Li-ion battery electrolytes[19]
    V2O5-PEDOT:PSSDI water120 ℃, 350 MPa, 20-30 min91%-93%Negative-temperature-resistance sensors[19,58]
    (LiBi)0.5MoO4-PTFEDI water120 ℃, 250-350 MPa, 20 min>85%Dielectrics[21]
    Na2Mo2O7-PEIDI water120 ℃, 175-350 MPa, 20 min>90%Dielectrics[59]
    SiO2-PTFETEOS/NaOH270 ℃, 430 MPa, 60 min90%-99%Dielectrics[60]
    BaTiO3-PTFEBa(OH)2·8H2O225 ℃, 350 MPa, 120 min>90%Dielectrics[61]
    ZnO-PTFEAcetic acid300 ℃, 350 MPa, 30 min93%-99%Varistors[62]
    LiFePO4-C-PVDFLiOH240 ℃, 30-750 MPa, 30 min89%Li-ion electrodes[63]
    NaNbO3-PVDFDI water180 ℃, 550 MPa, 10 min97%Dielectrics[64]
    ZnO-PEEKAcetic acid330 ℃, 300 MPa, 120 min>98%Varistors[65-66]
    ZnO-PDMSAcetic acid250 ℃, 320 MPa, 60 min>90%Varistors[67]
    ZnO/PVDF-TrFEAcetic acid140 ℃, 300 MPa, 240 min>95%Varistors[68]
    ZnO-PEI-Mn2O3-CoOAcetic acid150 ℃, 27 MPa, 60 min88%Varistors[69]
    LiFePO4-Li6.95Mg0.15La2.75Sr0.25Zr2O12-PPC-LiClO4DMF100-140℃, 400 MPa, 90-180 min>85%Li-ion battery electrolytes[70]
Tools

Get Citation

Copy Citation Text

Jingjing FENG, Youran ZHANG, Mingsheng MA, Yiqing LU, Zhifu LIU. Current Status and Development Trend of Cold Sintering Process[J]. Journal of Inorganic Materials, 2023, 38(2): 125

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: EDITORIAL

Received: Jun. 17, 2022

Accepted: --

Published Online: Sep. 27, 2023

The Author Email: FENG Jingjing (fengjingjing@mail.sic.ac.cn)

DOI:10.15541/jim20220338

Topics