PhotoniX, Volume. 2, Issue 1, 8(2021)

Deep learning wavefront sensing and aberration correction in atmospheric turbulence

Kaiqiang Wang1... MengMeng Zhang1, Ju Tang1, Lingke Wang1, Liusen Hu2, Xiaoyan Wu2, Wei Li2, Jianglei Di1, Guodong Liu2 and Jianlin Zhao1,* |Show fewer author(s)
Author Affiliations
  • 1MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, 710129 Xi’an, China
  • 2Institute of Fluid Physics, China Academy of Engineering Physics, 621900 Mianyang, China
  • show less
    References(33)

    [1] [1] Tyson R. Principles of adaptive optics. 0 ed.. Boca Raton: CRC Press; 2010. .

    [5] [5] Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: a brief review. Comput Intell Neurosci. 2018;2018:7068349. .

    [6] [6] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv. 2015;1409:1556. https://arxiv.org/abs/1409.1556.

    [7] [7] Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 779–88. .

    [8] [8] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv. 2015;1505:04597. https://arxiv.org/abs/1505.04597.

    [9] [9] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv preprint arXiv. 2016;1511:00561. https://arxiv.org/abs/1511.00561.

    [28] [28] Chen M, Jin X, Xu Z. Investigation of Convolution Neural Network-Based Wavefront Correction for FSO Systems. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an: IEEE; 2019, p. 1–6. .

    [29] [29] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 770–8. .

    [30] [30] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 2818–26. .

    [31] [31] Cohen G, Afshar S, Tapson J, van Schaik A. EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv. 2017;1702:05373. https://arxiv.org/abs/1702.05373.

    [32] [32] Huang GB, Mattar M, Berg T, Learned-Miller E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. 2008:15. https://hal.inria.fr/inria-00321923.

    [33] [33] Deng J, Dong W, Socher R, Li L-J, Li K, Li Fei-Fei. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Recognition P. Miami: IEEE; 2009, p. 248–55. .

    Tools

    Get Citation

    Copy Citation Text

    Kaiqiang Wang, MengMeng Zhang, Ju Tang, Lingke Wang, Liusen Hu, Xiaoyan Wu, Wei Li, Jianglei Di, Guodong Liu, Jianlin Zhao. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2021, 2(1): 8

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 19, 2021

    Accepted: Apr. 20, 2021

    Published Online: Jul. 10, 2023

    The Author Email: Zhao Jianlin (jlzhao@nwpu.edu.cn)

    DOI:10.1186/s43074-021-00030-4

    Topics