Journal of Innovative Optical Health Sciences, Volume. 11, Issue 4, 1850025(2018)
Optical in vivo and ex vivo imaging of glioma cells migration via the cerebral vessels: Prospective clinical application of the beta2-adrenoreceptors blockade for glioma treatment
[1] [1] A. W€ohrer, T. Waldh€or, H. Heinzl, M. Hackl, J. Feichtinger, U. Gruber-M€osenbacher, A. Kiefer, H. Maier, R. Motz, A. Reiner-Concin, B. Richling, C. Idriceanu, M. Scarpatetti, R. Sedivy, H. C. Bankl, W. Stiglbauer, M. Preusser, K. R€ossler, J. A. Hainfellner, “The Austrian Brain Tumour Registry: A cooperative way to establish a population-based brain tumour registry," J.Neurooncol. 95, 401–411 (2009).
[2] [2] I. Jovcevska, N. Kocevar, R. Komel, “Glioma and glioblastoma – how much do we (not) know?" Mol. Clin. Oncol. 1, 935–941 (2013).
[3] [3] R. Li, X. Chen, Y. You, X. Wang, Y. Liu, Q. Hu,W. Yan, “Comprehensive portrait of recurrent glioblastoma multiforme in molecular and clinical characteristics," Oncotarget, 6, 30968–30974 (2015).
[4] [4] S. Watkins, S. Robel, I. F. Kimbrough, S. M. Robert, G. Ellis-Davies, H. Sontheimer, “Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells," Nat. Commun. 5, 4196 (2014).
[5] [5] H. F. Dvorak, “Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma," Am. J. Pathol. 162, 1747–1757 (2003).
[6] [6] S. W. Cole, A. S. Nagaraja, S. K. Lutgendorf, P. A. Green, A. K. Sood, “Sympathetic nervous system regulation of the tumour microenvironment," Nat. Rev. Cancer. 15, 563–572 (2015).
[7] [7] G. N. Armaiz-Pena, S. W. Cole, S. K. Lutgendorf, A. K. Sood, “Neuroendocrine influences on cancer progression," Brain Behav. Immun. 30, S19–S25 (2013).
[8] [8] G. Qiao, M. Chen, M. J. Bucsek, E. A. Repasky, B. L. Hylander, “Adrenergic signaling: A targetable checkpoint limiting development of the antitumor immune response," Front. Immunol. 9, 164 (2018).
[9] [9] B. B. Eldeeb, E. M. Hammond, D. J. Worthington, J. R. Mann, “Urinary catecholamines and their metabolites in management of neuroblastoma," Pediatr. Hematol. Oncol. 5, 229–237 (1988).
[10] [10] T. I. Barron, R. M. Connolly, L. Sharp, K. Bennett, K. Visvanathan, “Beta blockers and breast cancer mortality: A population-based study," J. Clin. Oncol. 29, 2635–2644 (2011).
[11] [11] A. Melhem-Bertrandt, M. Chavez-Macgregor, X. Lei, E. N. Brown, R. T. Lee, F. Meric-Bernstam, A. K. Sood, S. D. Conzen, G. N. Hortobagyi, A. M. Gonzalez-Angulo, “Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer," J. Clin. Oncol. 29, 2645–2652 (2011).
[12] [12] E. S. Diaz, B. Y. Karlan, A. J. Li, “Impact of beta blockers on epithelial ovarian cancer survival," Gynecol Oncol. 127, 375–378 (2012).
[13] [13] V. De Giorgi, M. Grazzini, S. Gandini, S. Benemei, T. Lotti, N. Marchionni, P. Geppetti, “Treatment with β-blockers and reduced disease progression in patients with thick melanoma," Arch. Int. Med. 171, 779–781 (2011).
[14] [14] K. V. Quoc Lu'o'ng, L. T. Nguyên, “The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms," Cancer Manag. Res. 4, 431–445 (2012).
[15] [15] Q. Song, Q. Ji, Q. Li, “The role and mechanism of β-arrestins in cancer invasion and metastasis (Review)," Int. J. Mol. Med. 41, 631–639 (2018).
[16] [16] C. A. Izeboud, J. A. Mocking, M. Monshouwer, A. S. van Miert, R. F. Witkamp, “Participation of betaadrenergic receptors on macrophages in modulation of LPS-induced cytokine release," J. Recept. Signal Transduct. Res. 19, 191–202 (1999).
[17] [17] J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis," Nat. Rev. Cancer. 4, 71–78 (2004).
[18] [18] A. Mantovani, P. Allavena, A. Sica, F. Balkwill, “Cancer-related inflammation," Nature 454, 436–444 (2008).
[19] [19] S. Yousif, C. Marie-Claire, F. Roux, J. M. Scherrmann, X. Declèves, “Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy," Brain Res. 1134, 1–11 (2007).
[20] [20] U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4," Nature 227, 680–685 (1970).
[21] [21] H. L. Wang, T. W. Lai, “Optimization of Evans blue quantitation in limited rat tissue samples," Sci. Rep. 4, 6588 (2014).
[22] [22] A. Hoffmann, J. Bredno, M. Wendland, N. Derugin, P. Ohara, M. Wintermark, “High and low molecular weight fluorescein isothiocyanate (FITC)-dextrans to assess blood-brain barrier disruption: Technical considerations," Transl. Stroke Res. 2, 106–111 (2011).
[23] [23] D. G. Bernabe, A. C. Tamae, E. R. Biasoli, S. H. Oliveira, “Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells," Brain Behav. Immun. 25, 574–583 (2011).
[24] [24] X. Liu, W. K. Wu, L. Yu, J. J. Sung, G. Srivastava, S. T. Zhang, C. H. Cho, “Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway," J. Cell. Biochem. 105, 53–60 (2008).
[25] [25] X. Y. Huang, H. C. Wang, Z. Yuan, J. Huang, Q. Zheng, “Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via β-adrenergic receptor-dependent activation of P38/MAPK pathway," Hepatogastroenterology, 59, 889–893 (2012).
[26] [26] C. Perez Pinero, A. Bruzzone, M. G. Sarappa, L. F. Castillo, I. A. Lüthy, “Involvement of α2- and β2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation," Br. J. Pharmacol. 166, 721–736 (2012).
[27] [27] F. Hajighasemi, A. Mirshafiey, “In vitro sensitivity of leukemia cells to propranolol," J. Clin. Med. Res. 1, 144–149 (2009).
[28] [28] D. Zhang, Q. Y. Ma, H. T. Hu, M. Zhang, “β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkB and AP-1," Cancer Biol. Ther. 10, 19–29 (2010).
[29] [29] X. Liao, X. Che, W. Zhao, D. Zhang, T. Bi, G. Wang, “The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor kB signaling," Oncol. Rep. 24, 1669–1676 (2010).
[30] [30] D. G. Powe, M. J. Voss, K. S. Zanker, H. O. Habashy, A. R. Green, I. O. Ellis, F. Entschladen, “Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival," Oncotarget, 1, 628–638 (2010).
[31] [31] N. E. Wolter, J. K. Wolter, D. J. Enepekides, M. S. Irwin, “Propranolol as a novel adjunctive treatment for head and neck squamous cell carcinoma," J. Otolaryngol. Head Neck. Surg. 41, 334–344 (2012).
[32] [32] I. Sardi, L. Giunti, C. Bresci, A. M. Buccoliero, D. Degl'innocenti, S. Cardellicchio, G. Baroni, F. Castiglione, M. D. Ros, P. Fiorini, S. Giglio, L. Genitori, M. Aricò, L. Filippi, “Expression of β-adrenergic receptors in pediatric malignant brain tumors," Oncol. Lett. 5, 221–225 (2013).
[33] [33] M. R. Hara, J. J. Kovacs, E. J. Whalen, S. Rajagopal, R. T. Strachan, W. Grant, A. J. Towers, B. Williams, C. M. Lam, K. Xiao, S. K. Shenoy, S. G. Gregory, S. Ahn, D. R. Duckett, R. J. Lefkowitz, “A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1," Nature, 477(7364), 349–353 (2011).
[34] [34] J. K. Wolter, N. E. Wolter, A. Blanch, T. Partridge, L. Cheng, D. A. Morgenstern, M. Podkowa, D. R. Kaplan, M. S. Irwin, “Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma," Oncotarget, 5, 161–172 (2014).
[35] [35] A. Farin, S. O. Suzuki, M. Weiker, J. E. Goldman, J. N. Bruce, P. Canoll, “Transplanted glioma cells migrate and proliferate on host brain vasculature: A dynamic analysis," Glia. 53, 799–808 (2006).
[36] [36] D. Zagzag, R. Amirnovin, M. A. Greco, H. Yee, J. Holash, S. J. Wiegand, S. Zabski, G. D. Yancopoulos, M. Grumet, “Vascular apoptosis and involution in gliomas precede neovascularization: A novel concept for glioma growth and angiogenesis," Lab. Invest. 80, 837–849 (2000).
[37] [37] N. Nagano, H. Sasaki, M. Aoyagi, K. Hirakawa, “Invasion of experimental rat brain tumor: Early morphological changes following microinjection of C6 glioma cells," Act. Neuropathol. 86(2), 117–125 (1993).
[38] [38] L. G. Dubois, L. Campanati, C. Righy, I. D'Andrea-Meira, T. C. Spohr, I. Porto-Carreiro, C. M. Pereira, J. Balca-Silva, S. A. Kahn, M. F. DosSantos, A. Oliveira Mde, A. Ximenes-da-Silva, M. C. Lopes, E. Faveret, E. L. Gasparetto, V. Moura-Neto, “Gliomas and the vascular fragility of the blood brain barrier," Front. Cell. Neurosci. 8, 418 (2014).
[39] [39] G. Liu, J. Shi, L. Yang, L. Cao, S. M. Park, J. Cui, S. O. Marx, “Assembly of a Ca2t-dependent BK channel signaling complex by binding to β2 adrenergic receptor," EMBO J. 23, 2196–2205 (2004).
[40] [40] M. Matsushita, Y. Tanaka, K. Koike, “Studies on the mechanisms underlying beta-adrenoceptor-mediated relaxation of rat abdominal aorta," J. Smooth Muscle Res. 42, 217–225 (2006).
[41] [41] Y. Song, J. M. Simard, “beta-Adrenoceptor stimulation activates large-conductance Ca2t-activated Kt channels in smooth muscle cells frombasilar artery of guinea pig," Pflugers Arch. 430, 984–993 (1995).
Get Citation
Copy Citation Text
Olga Pavlova, Alexander Shirokov, Alexander Fomin, Nikita Navolokin, Andrey Terskov, Alexander Khorovodov, Anton Namykin, Alexey Pavlov, Valery Tuchin, Oxana Semyachkina-Glushkovskaya. Optical in vivo and ex vivo imaging of glioma cells migration via the cerebral vessels: Prospective clinical application of the beta2-adrenoreceptors blockade for glioma treatment[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850025
Received: May. 1, 2018
Accepted: May. 7, 2018
Published Online: Oct. 6, 2018
The Author Email: Tuchin Valery (pavlov.lesha@gmail.com)