High Power Laser and Particle Beams, Volume. 34, Issue 1, 011003(2022)

Laser driven explosion and shock wave: a review

Xianqian Wu1 and Chenguang Huang2、*
Author Affiliations
  • 1Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • 2Hefei Insitutites of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    Figures & Tables(18)
    Schematic of laser driven explosion and shock wave
    (a) One-dimensional coupling analytical model for laser driven explosion and shock wave. (b) Relationship between peak pressure and laser power density. (c) Laser-induced shock wave propagation and attenuation[19]
    (a) Parameters of laser, confined overlayer, metallic target. (b) Influence of thickness in confined overlayer on shock effect. (c) Influence of laser duration on shock effect. (d) Influence of laser power density on shock effect[27]
    Cross-sectional SEM morphologies of pure nickel[38]
    Schematic of grain refinement induced by multiple laser driven shock impacts in 304 stainless steel[49]
    Deformation-induced nanotwins by cryogenic laser shock peening of 304 stainless steel[59]
    Ejection of the high-temperature matter with an evolving bubble after single-shot nanosecond pulse laser ablation of the metallic glass target in water. The sketch at the bottom of the figure shows the main stages during the pulse laser ablation[62]
    Schematic of laser induced shock experiments[70]
    (a) The average shock velocities along the thickness of the STF. (b) The stress attenuation and corresponding energy absorption in the STF[70]
    (a) The martensitic transformation of NiTi after LSP [75]. (b) Amorphization of NiTi surface after LSP[78].
    Phase diagram of the NiTi nanopillar at various temperatures and at various strain rates[79,81]
    (a) Schematic illustration of LDF launch pad. (b) High-speed photography of a flyer plate lauched at 540 m/s[83-84]
    (a) Improved LIPIT setup designed by Xiao et al. (b) Impact process of LIPIT[91-94]
    (a) Specific energy absorption (SEA) value of different materials under different impact velocity[89]. (b) Failure model of GR film under impact[89]
    (a) Relationship between impact velocity and SEA of CNT film. (b) Comparison of SEA[95].(c) Relationship between SEA and crosslink density[94]. (d) Evolution of ΔEs/ΔEb of CNT film with different crosslink density[94]. (e) Penetration morphologies change of CNT film before and after adding crosslinks[94]
    SEA value of Ni60Ta40 amorphous alloy[67]
    (a) Relationship between SEA of PS film and entanglement degree [98]. (b) Failure morphologies of PS film and PC film. (c) Micro-structure change of bulk lamellar nanocomposite under impact along different directions[100]. (d) SEA value of P(VDF-TrEE) thin film[101]
    (a) In-situ observation of the re-bounding and bonding moment in microparticle impact. Multi-frame sequences at top and bottom showing the Al particle impacts on Al substrate below (605 m/s) and above (805 m/s) the critical velocity[102]. (b) Calculation results of dynamic hardness of metallic materials[104]. (c) Melt-driven erosion map. Impact velocity at which melt-driven erosion is triggered for different combinations of particle/substrate materials[105]
    Tools

    Get Citation

    Copy Citation Text

    Xianqian Wu, Chenguang Huang. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 2022, 34(1): 011003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thermal and Mechanical Effects of Laser

    Received: Jul. 28, 2021

    Accepted: --

    Published Online: Jan. 25, 2022

    The Author Email: Huang Chenguang (huangcg@imech.ac.cn)

    DOI:10.11884/HPLPB202234.210326

    Topics