Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2197(2024)

Capacitive Energy Storage Performance of Poly(ether imide) Composites with TiO2 Particles

SHI Qingyu... YUAN Zie, ZHAO Yaoting, ZHANG Xiaofang, LIN Xiujuan* and YANG Changhong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [1] [1] DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Adv Mater, 2013, 25(44): 6334-6365.

    [2] [2] SUN S B, SHI Z C, SUN L, et al. Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer[J]. ACS Appl Mater Interfaces, 2021, 13(23): 27522-27532.

    [3] [3] YAO L, WANG D R, HU P H, et al. Synergetic enhancement of permittivity and breakdown strength in all-polymeric dielectrics toward flexible energy storage devices[J]. Adv Mater Inter, 2016, 3(13): 1600016.

    [4] [4] ZHU Y F, ZHANG Z B, LITT M H, et al. High dielectric constant sulfonyl-containing dipolar glass polymers with enhanced orientational polarization[J]. Macromolecules, 2018, 51(16): 6257-6266.

    [5] [5] HO J, JOW T R. High field conduction in biaxially oriented polypropylene at elevated temperature[J]. IEEE Trans Dielectr Electr Insul, 2012, 19(3): 990-995.

    [6] [6] YE H R, YANG F, PAN Z B, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications[J]. Acta Mater, 2021, 203: 116484.

    [7] [7] LI H, XIE Z L, LIU L L, et al. High-performance insulation materials from poly(ether imide)/boron nitride nanosheets with enhanced DC breakdown strength and thermal stability[J]. IEEE Trans Dielectr Electr Insul, 2019, 26(3): 722-729.

    [8] [8] HANLEY T L, BURFORD R P, FLEMING R J, et al. A general review of polymeric insulation for use in HVDC cables[J]. IEEE Electr Insul Mag, 2003, 19(1): 13-24.

    [9] [9] AZIZI A, GADINSKI M R, LI Q, et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials[J]. Adv Mater, 2017, 29(35): 1701864.

    [10] [10] CHI Q G, XU L M, ZHANG C H, et al. Enhancing the high-temperature energy storage performance of PEI dielectric film through deposition of high-dielectric PZT coating layer [J]. Ceram Int, 2023, 49(16): 26246-26255.

    [11] [11] REN L L, YANG L J, ZHANG S Y, et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors[J]. Compos Sci Technol, 2021, 201: 108528.

    [12] [12] LI X N, LUO H, YANG C C, et al. Enhancing high-temperature energy storage performance of PEI-based dielectrics by incorporating ZIF-67 with a narrow bandgap[J]. ACS Appl Mater Interfaces, 2023, 15(35): 41828-41838.

    [13] [13] LIN S, KUANG X W, WANG F H, et al. Effect of TiO2 crystalline composition on the dielectric properties of TiO2/P(VDF-TrFE) composites[J]. Phys Status Solidi RRL, 2012, 6(8): 352-354.

    [14] [14] DANG Z M, YOU S S, ZHA J W, et al. Effect of shell-layer thickness on dielectric properties in Ag@TiO2 core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride) composites[J]. Phys Status Solidi A, 2010, 207(3): 739-742.

    [15] [15] MO T C, WANG H W, CHEN S Y, et al. Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites[J]. Ceram Int, 2008, 34(7): 1767-1771.

    [16] [16] ZHA J W, DANG Z M, ZHOU T, et al. Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process[J]. Synth Met, 2010, 160(23/24): 2670-2674.

    [17] [17] MALIAKAL A, KATZ H, COTTS P M, et al. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications[J]. J Am Chem Soc, 2005, 127(42): 14655-14662.

    [18] [18] HAN Yidan, WANG Kai, XU Zhijian, et al. J Chin Ceram Soc, 2012, 40(9): 1289-1293.

    [19] [19] XIE Xian, HUANG Guidong, HAO Yanping, et al. J Beijing Inst Graph Commun, 2016, 24(4): 74-78.

    [20] [20] WANG Y F, CUI J, WANG L X, et al. Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/ polymer nanocomposites[J]. J Mater Chem A, 2017, 5(9): 4710-4718.

    [21] [21] ZHANG Y H, LU S G, LI Y Q, et al. Novel silica tube/polyimide composite films with variable low dielectric constant[J]. Adv Mater, 2005, 17(8): 1056-1059.

    [22] [22] RYTOLUOTO I, LAHTI K. New approach to evaluate area-dependent breakdown characteristics of dielectric polymer films[J]. IEEE Trans Dielectr Electr Insul, 2013, 20(3): 937-946.

    [23] [23] FAN M Z, HU P H, DAN Z K, et al. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles[J]. J Mater Chem A, 2020, 8(46): 24536-24542.

    [24] [24] STARK K H, GARTON C G. Electric strength of irradiated polythene[J]. Nature, 1955, 176(4495): 1225-1226.

    [25] [25] ZHU M, HUANG X Y, YANG K, et al. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: Understanding the role of polymer shells in the interfacial regions[J]. ACS Appl Mater Interfaces, 2014, 6(22): 19644-19654.

    [26] [26] SUN L, SHI Z C, HE B L, et al. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors[J]. Adv Funct Mater, 2021, 31(35): 2100280.

    [27] [27] MIAO W J, CHEN H X, PAN Z B, et al. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage[J]. Compos Sci Technol, 2021, 201: 108501.

    Tools

    Get Citation

    Copy Citation Text

    SHI Qingyu, YUAN Zie, ZHAO Yaoting, ZHANG Xiaofang, LIN Xiujuan, YANG Changhong. Capacitive Energy Storage Performance of Poly(ether imide) Composites with TiO2 Particles[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2197

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 11, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Xiujuan LIN (mse_linxj@ujn.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230778

    Topics