Chinese Journal of Quantum Electronics, Volume. 39, Issue 4, 541(2022)
Correction of plasmon dispersion relation due to thickness of monolayer-atom system
[1] [1] Zhang H C, Cui T J, Luo Y, et al. Active digital spoof plasmonics [J]. National Science Review, 2019, 7(2): 261-269.
[2] [2] Wei H, Li Z P, Tian X R, et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks [J]. Nano Letters, 2011, 11(2): 471-475.
[3] [3] Ma R M, Ota S, Li Y M, et al. Explosives detection in a lasing plasmon nanocavity [J]. Nature Nanotechnology, 2014, 9(8): 600-604.
[4] [4] Wang S M, Cheng Q Q, Gong Y X, et al. A 14×14?μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide [J]. Nature Communications, 2016, 7: 11490.
[5] [5] Jin G, Huang X Y, Huang J Q. Dispersion and transmission property of resonator side coupling MDM waveguide based on surface plasmon polaritons [J]. Chinese Journal of Quantum Electronics, 2015, 32(6): 648-653.
[7] [7] Yu M H, Song J, Niu H B, et al. Quadrupole plasmon lasers with a super low threshold based on an active three-layer nanoshell structure [J]. Plasmonics, 2016, 11(1): 231-239.
[8] [8] Stern F. Polarizability of a two-dimensional electron gas [J]. Physical Review Letters, 1967, 18(14): 546-548.
[9] [9] Miesenbock H M. Dispersion of a layered electron gas with nearest neighbour-tunneling [J]. Zeitschrift Für Physik B Condensed Matter, 1989, 75(3): 347-351.
[10] [10] Toyoda T, Fujita M, Hiraiwa N, et al. Electromagnetic waves propagating in a quasi-two-dimensional electron gas in a magnetic field and excited by intense laser radiation [J]. Physical Review B, 2007, 75(3): 033306.
[11] [11] Narjis A, El kaaouachi A, Liang C T, et al. Spin polarization in a two-dimensional electron gas in GaAs [J]. Physica Scripta, 2013, 87(4): 045703.
[12] [12] Li Z Z. Solid State Theory [M]. 2nd edition, Beijing: Higher Education Press, 2002: 107-108.
[13] [13] Zeng K, Fan X D, Wang D L, et al. Modulation of coupling between graphene plasmon and substrate’s phonon by changing dielectric environment [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 138-143.
[16] [16] Eriksson M A, Pinczuk A, Dennis B S, et al. Collective excitations in low-density 2D electron systems [J]. Physica E, 2000, 6(1-4): 165-168.
[17] [17] Hirjibehedin C F, Pinczuk A, Dennis B S, et al. Evidence of electron correlations in plasmon dispersions of ultralow density two-dimensional electron systems [J]. Physical Review B, 2002, 65(16): 161309.
[18] [18] Hwang E H, Das Sarma S. Plasmon dispersion in dilute two-dimensional electron systems: Quantum-classical and Wigner crystal-electron liquid crossover [J]. Physical Review B, 2001, 64(16): 165409.
[19] [19] Fukuda T, Hiraiwa N, Mitani T, et al. Plasmon dispersion of a two-dimensional electron system with finite layer width [J]. Physical Review B, 2007, 76(3): 033416.
[20] [20] Yuan Z, Gao S W. Linear-response study of plasmon excitation in metallic thin films: Layer-dependent hybridization and dispersion [J]. Physical Review B, 2006, 73(15): 155411.
Get Citation
Copy Citation Text
WU Renglai, YU Yabin, XIAO Shifa, QUAN Jun. Correction of plasmon dispersion relation due to thickness of monolayer-atom system[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 541
Category:
Received: May. 6, 2021
Accepted: --
Published Online: Aug. 24, 2022
The Author Email: Renglai WU (wurenglai@sohu.com)