Electro-Optic Technology Application, Volume. 33, Issue 4, 31(2018)
Adaptive Weighted Second Order Total Generalized Variation Image De-noising
[1] [1] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D,1992,60: 259-268.
[2] [2] Lysaker M, Lundervold A, Tai X C. Noise removal using fourth order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12(12): 1579-1590.
[3] [3] Bredies K, Kunisch K, Pock T. Total generalized variation[J]. SIAM Journal on Imaging Sciences,2010,3(3): 492-526.
[4] [4] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal Mathematical Imaging Vision, 2011, 40(1): 120-145.
[5] [5] Chambolle A, Lions PL. Image recovery via total variation minimization and related problems[J]. Numerische Mathematik,1997,76(2): 167-188.
[6] [6] Weickert J. Theoretical foundation of anisotropic diffusion in image processing[J]. Computing Supplement,1996,11: 221-236.
[7] [7] Bredies K,Valkonen T. Inverse problems with second-order total generalized variation constraints[A]. Proceedings of SampTA 2011-9th International conference on sampling theory and applications, Singapore,2011:1-4.
[8] [8] Knoll F, Bredies K, Pock T, et al. Second order total generalized variation (TGV) for MRI[J]. Magnetic Resonance in Medicine,2011,65(2): 480-491.
[9] [9] Pock T,Zebedin L,Bischof H. TGV-Fusion [J]. Springer-Verlag,2011,6570: 245-258.
[10] [10] Kirsch R. Computer detection of the constituent structure of biological image[J]. Computers and Biomedical Research,1971,4(3): 315-328.
Get Citation
Copy Citation Text
MA Xiao-yue, ZHAO Xun-jie. Adaptive Weighted Second Order Total Generalized Variation Image De-noising[J]. Electro-Optic Technology Application, 2018, 33(4): 31
Category:
Received: Jul. 31, 2018
Accepted: --
Published Online: Mar. 11, 2019
The Author Email:
CSTR:32186.14.