Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1028003(2025)

Improved YOLOv8s Object Detection Algorithm for Remote Sensing Image

Lunming Qin1, Wenquan Mei1, Haoyang Cui1, Houqin Bian1、*, and Xi Wang2
Author Affiliations
  • 1College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China
  • 2School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
  • show less
    Figures & Tables(15)
    Structure of improved model network
    Structures of BiFPN and EBiFPN networks. (a) BiFPN; (b) EBiFPN
    Structure of EMA attention mechanism
    Structure of EMABottleneck module
    Structure of C2f-EB module
    Schematic diagram of SIoU parameters
    Label quantity of different datasets. (a) DOTA dataset; (b) RSOD dataset; (b) NWPU NHR-10 dataset
    Detection results of different algorithms on the NWPU NHR-10 dataset
    Comparison of detection results between YOLOv8 and proposed algorithm. (a)‒(c) YOLOv8; (d)‒(f) proposed algorithm
    • Table 1. Experimental environment configuration

      View table

      Table 1. Experimental environment configuration

      ParameterConfiguration
      Operating systemUbuntu
      GPUNVIDIA GeForce RTX 3090
      Python3.8
      CUDA11.7
    • Table 2. Comparison of different feature fusion structures

      View table

      Table 2. Comparison of different feature fusion structures

      NeckmAP50mAP50∶95
      FPN-PAN70.047.2
      BiFPN70.947.9
      EBiFPN71.749.1
    • Table 3. Comparison of different loss functions

      View table

      Table 3. Comparison of different loss functions

      Loss functionmAP50mAP50∶95
      CIoU70.047.2
      WIoU70.847.7
      ShapeIoU70.047.7
      MPDIoU69.947.6
      SIoU70.347.8
      SWIoU71.548.3
    • Table 4. Results of ablation experiments

      View table

      Table 4. Results of ablation experiments

      MethodEBiFPNC2f-EBSWIoUmAP50 /%mAP50∶95 /%Params /MGFLOPs
      170.047.211.128.5
      271.749.112.231.8
      371.448.411.128.7
      471.548.311.128.5
      571.949.212.332.1
      673.049.512.332.1
    • Table 5. Detection results of different methods on the DOTA dataset

      View table

      Table 5. Detection results of different methods on the DOTA dataset

      MethodmAP50 /%Params /MGFLOPsModel size /MB
      SSD47.324.0274.594.4
      Faster R-CNN50.4136.8401.8534.2
      CenterNet49.832.770.2127.9
      RetinaNet49.436.4146.3142.5
      YOLOv5m69.820.947.941.2
      YOLOXs67.69.026.835.2
      YOLOv7-Tiny66.56.013.012.0
      YOLOv8s70.011.128.522.0
      YOLOv8m72.225.979.350.8
      Proposed73.012.332.124.3
    • Table 6. Detection results of different methods on the RSOD dataset

      View table

      Table 6. Detection results of different methods on the RSOD dataset

      MethodAP /%mAP50 /%Params /MGFLOPsModel size /MB
      AircraftOlitankOverpassPlayground
      SSD56.593.458.896.576.324.0274.594.4
      Faster R-CNN66.296.766.298.581.9136.8401.8534.2
      Cenernnet81.098.387.198.191.132.770.2127.9
      Retinanet75.998.787.198.390.036.4146.3142.5
      YOLOv5m92.094.288.893.992.220.947.941.2
      YOLOXs89.799.581.098.592.29.026.835.2
      YOLOv7-Tiny90.396.060.996.485.96.013.012.0
      YOLOv8s92.797.788.898.194.311.128.522.0
      YOLOv8m93.698.390.298.495.125.979.350.8
      Proposed93.996.593.998.695.712.332.124.3
    Tools

    Get Citation

    Copy Citation Text

    Lunming Qin, Wenquan Mei, Haoyang Cui, Houqin Bian, Xi Wang. Improved YOLOv8s Object Detection Algorithm for Remote Sensing Image[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1028003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Aug. 29, 2024

    Accepted: Nov. 7, 2024

    Published Online: Apr. 23, 2025

    The Author Email: Houqin Bian (bianhouqin@163.com)

    DOI:10.3788/LOP241927

    CSTR:32186.14.LOP241927

    Topics