Optics and Precision Engineering, Volume. 26, Issue 7, 1642(2018)

A survey of line of sight control technology for airborne photoelectric payload

CHE Xin1...2,3, JIA Ping1,2, and TIAN Da-peng12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(56)

    [1] [1] XIE R H.The Research of Stabilization and Tracking Control Techniques on Airborne Opto-electric Platform Servo System[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2017. (in Chinese)

    [2] [2] JI SH P. Equipment development of airborne electro-optic payload and its key technologies[J].Aero Weaponry, 2017 (6): 3-12. (in Chinese)

    [3] [3] CARLSON R, LAJOIE-MAZENC M, FAGUNDES J. Analysis of torque ripple due to phase commutation in brushless DC machines[J]. IEEE Transactions on Industry Applications, 1992, 28(3): 632-638.

    [4] [4] MURAI Y, KAWASE Y, OHASHI K, et al.. Torque ripple improvement for brushless DC miniature motors[J]. IEEE Transactions on Industry Applications, 1989, 25(3): 441-450.

    [5] [5] XIA K, LU J, BI C, et al.. Dynamic commutation torque-ripple reduction for brushless DC motor based on quasi-Z-source net[J]. Iet Electric Power Applications, 2016, 10(9): 819-826.

    [6] [6] WEI K, LOU ZH L, ZHANG ZH CH. Research on the commutation current prediction control in brushless DC motor[C]. Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005: 6-10.

    [7] [7] YEO H G, HONG C S, YOO J Y, et al.. Sensorless drive for interior permanent magnet brushless DC motors[C]. 1997 IEEE International Electric Machines and Drives Conference Record, 1997: 18-21.

    [8] [8] OGSAWARA S, AKAGI H. An approach to position sensorless drive for brushless DC motors[C]. Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, 1990: 7-12.

    [9] [9] ERTUGRUL N, ACARNLEY P. A new algorithm for sensorless operation of permanent magnet motors[J]. IEEE Transactions on Industry Applications, 1994, 30(1): 126-133.

    [10] [10] CHAMPA P, SOMSIRI P, WIPASURAMONTON P, et al.. Initial rotor position estimation for sensorless brushless DC drives[J]. IEEE Transactions on Industry Applications, 2009, 45(4): 1318-1324.

    [11] [11] BLASCHKE F. The principle of field orientation as applied to the new transvector closed loop control systems for rotating field machines[J]. Siemens Review, 1972, 39: 217-220.

    [12] [12] WU R, SLEMON G R. A permanent magnet motor drive without a shaft sensor[J]. IEEE Transactions on Industry Applications. 1991, 27(5): 1005-1011.

    [13] [13] SOLSONA J, VALLA M I, MURAVCHIK C. A nonlinear reduced order observer for permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics. 1996, 43(4): 492-497.

    [14] [14] CORLEY M J, LORENZ R D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 784-789.

    [15] [15] XU P L, ZHU Z Q. Novel carrier signal injection method using zero-sequence voltage for sensorless control of PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2053-2061.

    [16] [16] TANG Q, SHEN A, LUO X, et al.. PMSm sensorless control by injecting HF pulsating carrier signal into ABC frame[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3767-3776.

    [17] [17] DEPENBROCK M. Direct self-control (DSC) of inverter-fed induction machine[J]. IEEE Transactions on Power Electronics, 1988, 3(4): 420-429.

    [18] [18] ZHANG Z, WEI C, QIAO W, et al.. Adaptive saturation controller-based direct torque control for permanent-magnet synchronous machines[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7112-7122.

    [19] [19] ABOSH A H, ZHU Z Q, REN Y. Reduction of torque and flux ripples in space vector modulation-based direct torque control of asymmetric permanent magnet synchronous machine[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 2976-2986.

    [20] [20] CHENG L.Fast Acquisition Control for the Op-electrical Tracking System with Permanent Magnet Synchronous Motor[D]. Changchun: Electric and Electronic College of Changchun University of Technology, 2016. (in Chinese)

    [21] [21] BETIN F, CAPOLINO GA, CASADEI D, et al.. Trends in electrical machines control: samples for classical, sensorless, and fault-tolerant techniques[J]. IEEE Industrial Electronics Magazine, 2014, 8(2): 43-55.

    [22] [22] OHNISHI K, SHIBATA M, MURAKAMI T. Motion control for advanced mechatronics[J]. IEEE/ASME Transactions on Mechatronics, 1996, 1(1): 56-67.

    [23] [23] DENG C, TANG T, MAO Y, et al.. Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems[J]. IEEE Photonics Journal, 2017, 9(3): 1-11.

    [24] [24] MA Z, TONG S, LI Y. Adaptive output feedback fault-tolerant control for MIMO non-affine non-linear systems based on disturbance observer[J]. IET Control Theory & Applications, 2016, 10(18): 2422-2436.

    [25] [25] CHEN M, SHAO S Y, SHI P, et al.. Disturbance-observer-based robust synchronization control for a class of fractional-order chaotic systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(4): 417-421.

    [26] [26] DASGUPTA S, SADHU S, GHOSHAL T K. Designing disturbance observer for non-linear systems-a hirschorn inverse approach[J]. IET Science, Measurement & Technology, 2017, 11(2): 164-170.

    [27] [27] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.

    [28] [28] DAI C, YANG J, WANG Z, et al.. Universal active disturbance rejection control for non-linear systems with multiple disturbances via a high-order sliding mode observer[J]. IET Control Theory & Applications, 2016, 11(8): 1194-1204.

    [29] [29] HERBST G. Practical active disturbance rejection control: bumpless transfer, rate limitation, and incremental algorithm[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1754-1762.

    [30] [30] TAN W, FU C. Linear active disturbance-rejection control: analysis and tuning via IMC[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2350-2359.

    [31] [31] LI J, XIA Y, QI X, et al.. On the Necessity, scheme, and basis of the Linear&#8211: nonlinear switching in active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1425-1435.

    [32] [32] SHE J H, XIN X, OHYAMA Y. Estimation of equivalent input disturbance improves vehicular steering control[J]. IEEE Transactions on Vehicular Technology, 2007, 56(6): 3722-3731.

    [33] [33] LIU R J, WU M, LIU G P, et al.. Active disturbance rejection control based on an improved equivalent-input-disturbance approach[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1410-1413.

    [35] [35] JIN CH Q, ZHANG B, LI X T, et al.. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47(6): 1876-1885. (in Chinese)

    [36] [36] CHENG L, CHEN J, CHEN M SH, et al.. Fast acquisition of time optimal sliding model control technology for photoelectric tracking system[J]. Opt. Precision Eng., 2017, 25(1): 148-154. (in Chinese)

    [37] [37] FENG Y, YU X H, MAN ZH H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.

    [38] [38] NGUYEN T, SU W C, GAJIC Z, et al.. Higher accuracy output feedback sliding mode control of sampled-data systems[J]. IEEE Transactions on Automatic Control, 2016, 61(10): 3177-3182.

    [39] [39] HU X, WU L, SI X, et al.. Adaptive sliding mode control of non-linear non-minimum phase system with input delay[J]. IET Control Theory & Applications, 2016, 11(8): 1153-1161.

    [40] [40] SONG J, NIU Y, ZOU Y. Finite-time stabilization via sliding mode control[J]. IEEE Transactions on Automatic Control, 2017, 62(3): 1478-1483.

    [41] [41] UTKIN V. Discussion aspects of high-order sliding mode control[J]. IEEE Transactions on Automatic Control, 2016, 61(3): 829-833.

    [42] [42] WANG G, RAO CH H. Adaptive control of piezoelectric fast steering mirror for high precision tracking application[J]. Smart Mater. Struct., 2015, 24(3): 11.

    [43] [43] GU G Y, ZHU L M, SU C Y. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified prandtl-ishlinskii model[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1583-1595.

    [44] [44] LIU Y F, SHAN J J, MENG Y, et al.. Modeling and identification of asymmetric hysteresis in smart actuators: a modified MS model approach[J]. IEEE-ASME Transactions on Mechatronics, 2016, 21(1): 38-43.

    [45] [45] LIU W, CHENG L, HOU Z G, et al.. An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 214-226.

    [46] [46] AL-GHANIMI A, ZHENG J, MAN ZH H. Robust and fast non-singular terminal sliding mode control for piezoelectric actuators[J]. IET Control Theory & Applications, 2015, 9(18): 2678-2687.

    [47] [47] XU Q. Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1): 238-248.

    [48] [48] WANG Y T, ZHANG Y P, XU Y L.Dual-loop control strategy for fast-steering mirror driven by PZT[J]. Chinese Journal of Scientific Instrument, 2014(S1): 68-72. (in Chinese)

    [49] [49] TIAN F Q, LI K Y, WANG J, et al.. Adaptive backstepping sliding mode control of fast steering mirror driven by piezoelectric actuator[J]. High Power Laser and Particle Beams, 2014(1): 65-69. (in Chinese)

    [50] [50] FAN M, HUANG L, LI M, et al... A fast high voltage driver for the piezoelectric fast steering mirror[C]. XX International Symposium on High Power Laser Systems and Applications, SPIE, 2015.

    [51] [51] YUE Y F. Research of delay of sensor and control algorithms in opto-electronic tracking system[J]. Computer Engineering and Design, 2012, 33(7): 2868-2873. (in Chinese)

    [52] [52] ZHANG J, WANG H L, GAI W D. Ground target tracking method research based on adaptive estimation for electro-optical platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010(12): 1465-1468. (in Chinese)

    [53] [53] HWANG C L. Decentralized fuzzy control of nonlinear interconnected dynamic delay systems via mixed H2/H∞ optimization with smith predictor[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 276-290.

    [54] [54] LAI C L, HSU P L. Design the remote control system with the time-delay estimator and the adaptive smith predictor[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 73-80.

    [55] [55] ORTEGA R, SCHAFT AJVD, MAREELS I, et al.. Putting energy back in control[J]. IEEE Control Systems, 2001, 21(2): 18-33.

    [56] [56] MAHMOUD M S, ZRIBI M. Passive control synthesis for uncertain systems with multiple-state delays[J]. Computers & Electrical Engineering, 2002, 28(3): 195-216.

    CLP Journals

    [1] WANG Mei-yu, TIAN Da-peng, GUO Li-hong. Kinematics modeling and model validation of series spherical mechanism for photoelectric platform[J]. Optics and Precision Engineering, 2020, 28(8): 1725

    [2] ZHANG Zhen-jun, WANG Jian-cheng, CHENG Xiang-ming, ZHANG Yi-gong, MAO Wei. Measurement and calibration of optical axis changes for multi-function astronomical theodolite[J]. Optics and Precision Engineering, 2019, 27(11): 2321

    Tools

    Get Citation

    Copy Citation Text

    CHE Xin, JIA Ping, TIAN Da-peng. A survey of line of sight control technology for airborne photoelectric payload[J]. Optics and Precision Engineering, 2018, 26(7): 1642

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 4, 2018

    Accepted: --

    Published Online: Oct. 2, 2018

    The Author Email:

    DOI:10.3788/ope.20182607.1642

    Topics