Acta Optica Sinica, Volume. 36, Issue 4, 427001(2016)

Experimental Preparation of a Pure Two-Mode Squeezed State

Li Qiang1,2、*, Deng Xiaowei1,2, Zhang Qiang1,2, and Su Xiaolong1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(40)

    [1] [1] Braunstein S L, Van Loock P. Quantum information with continuous variables[J]. Rev Mod Phys, 2005, 77(2): 513-577.

    [2] [2] Lvovsky A I. Squeezed light[J]. Journal of Cornell University, 2014, 1401: 4118v1.

    [3] [3] Su X L, Zhao Y P, Hao S H, et al.. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Opt Lett, 2012, 37 (24): 5178-5180.

    [4] [4] Zhao Yaping, Hao Shuhong, Su Xiaolong, et al.. Generation system of continuous-variable six-partite and eight-partite star cluster entangled states[J]. Acta Optica Sinica, 2012, 32(6): 0627002.

    [5] [5] Slavik R, Parmigiani F, Kakande J, et al.. All-optical phase and amplitude regenerator for next-generation telecommunications systems [J]. Nat Photon, 2010, 4(10): 690-695.

    [6] [6] Schnabel R, Mavalvala N, McClelland D E, et al.. Quantum metrology for gravitational wave astronomy[J]. Nat Commun, 2010, 1: 121- 130.

    [7] [7] Aasi J, Abadie J, Abbott B, et al.. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nat Photon, 2013, 7(8): 613-619.

    [8] [8] Sun H X, Liu Z L, Liu K, et al.. Experimental demonstration of a displacement measurement of an optical beam beyond the quantum noise limit[J]. Chin Phys Lett, 2014, 31(8): 084202.

    [9] [9] Wang H, Zhang Y, Pan Q, et al.. Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter[J]. Phys Rev Lett, 1999, 82(7): 1414-1417.

    [10] [10] Slusher R E, Hollberg L W, Yurke B, et al.. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Phys Rev Lett, 1985, 55(22): 2409-2414.

    [11] [11] Wu L A, Kimble H J, Hall J L, et al.. Generarion of squeezed state by parametric down conversion[J]. Phys Rev Lett, 1986, 57(20): 2520- 2523.

    [12] [12] Peng K C, Pan Q, Wang H, et al.. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw- NOPO[J]. Appl Phys B, 1998, 66(6): 755-758.

    [13] [13] Zhang Min, Zhou Yaoyao, Li Fang, et al.. Realization of low threshold operation of non-degenerate optical parametric amplifier with wedged KTP crystal[J]. Acta Optica Sinica, 2014, 34(3): 0327001.

    [14] [14] Wang Y, Shen H, Jin X L, et al.. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier[J]. Opt Express, 2010, 18(6): 6149-6155.

    [15] [15] Wu Zhiqiang, Zhou Haijun, Wang Yajun, et al.. Generation of bright amplitude squeezed light at 1.3 μm by using a home-made all solid state laser as pump source[J]. Acta Sinica Quantum Optica, 2013, 19(1): 1-5.

    [16] [16] Wasilewski W, Fernholz T, Jensen K, et al.. Generation of two-mode squeezed and entangled light in a single temporal and spatial mode [J]. Opt Express, 2009, 17(16): 14444-14457.

    [17] [17] Mehmet M, Ast S, Eberle T, et al.. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB[J]. Opt Express, 2011, 19(25): 25763-25772.

    [18] [18] Zhou Y Y, Jia X J, Li F, et al.. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J]. Opt Express, 2015, 23(4): 4952-4959.

    [19] [19] Van Enk S J, Hirota O. Entangled coherent states: Teleportation and decoherence[J]. Phys Rev A, 2001, 64(2): 022313.

    [20] [20] Ralph T C, Gilchrist A, Milburn G J. Quantum computation with optical coherent states[J]. Phys Rev A, 2003, 68(4): 042319.

    [21] [21] Lund A P, Ralph T C, Haselgrove H L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states[J]. Phys Rev Lett, 2008, 100(3): 030503.

    [22] [22] Gilchrist A, Nemoto K, Munro W J, et al.. Schr dinger cats and their power for quantum information processing[J]. J Opt B, 2004, 6(8): S828-S833.

    [23] [23] Monroe C, Meekhof D M, King B E, et al.. A " Schr dinger cat" superposition state of an atom[J]. Science, 1996, 272(5265): 1131-1136.

    [24] [24] Hofheinz M, Wang H, Ansmann M, et al.. Synthesizing arbitrary quantum states in a superconducting resonator[J]. Nature, 2009, 459(7246): 546-549.

    [25] [25] Ourjoumtsev A, Brouri R T, Laurat J, et al.. Generating optical Schr dinger kittens for quantum information processing[J]. Science, 2006, 312(5770): 83-87.

    [26] [26] Neergaard-Nielsen J S, Nielsen B M, Hettich C, et al.. Generation of a superposition of odd photon number states for quantum information networks[J]. Phys Rev Lett, 2006, 97(8): 083604.

    [27] [27] Wakui K, Takahashi H. Photon subtracted squeezed states generated with periodically poled KTiOPO4[J]. Opt Express, 2007, 15(6): 3568- 3574.

    [28] [28] Dakna M, Anhut T, Opatrny T, et al.. Generating Schr dinger-cat-like states by means of conditional measurements on a beam splitter [J]. Phys Rev A, 1997, 55(4): 3184-3194.

    [29] [29] Laghaout A, Neergaard-Nielsen J S, Rigas J, et al.. Measurement-induced amplification of optical cat-like states[C]. Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, IEEE, 2013: 1-1.

    [30] [30] Takahashi H, Wakui K, Suzuki S, et al.. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction [J]. Phys Rev Lett, 2008, 101(23): 233605.

    [31] [31] Laghaout A, Neergaard-Nielsen J S, Rigas I, et al.. Amplication of realistic Schr dinger cat-like states by homodyne heralding[J]. Phys Rev A, 2013, 87(4): 043826.

    [32] [32] Aoki T, Takahashi G, Furusawa A. Squeezing at 946 nm with periodically poled KTiOPO4[J]. Opt Express, 2006, 14(15): 6930-6935.

    [33] [33] Paris M G A, Illuminati F, Serafini A, et al.. Purity of Gaussian states: Measurement schemes and time-evolution in noisy channels[J]. Phys Rev A, 2003, 68(1): 012314.

    [35] [35] Zhang Y, Wang H, Li X Y, et al.. Experimental generation of bright two- mode quadrature squeezed light from a narrow- band nondegenerate optical parametric amplifier[J]. Phys Rev A, 2000, 62(2): 023813.

    [36] [36] Lvovsky A I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography[J]. J Opt B, 2004, 6(6): 556-559.

    [37] [37] Zhai Y Y, Fan B, Yang S F, et al.. A tunable blue light source with narrow linewidth for cold atom experiments[J]. Chin Phys Lett, 2013, 30(4): 044209.

    [38] [38] Douillet A, Zondy J-J, Yelisseyev A, et al.. Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators[J]. J Opt Soc Am B, 1999, 16(9): 1481-1498.

    [39] [39] Targat R L, Zondy J-J, Lemonde P. 75%-efficiency blue generation from an intracavity PPKTP frequency doubler[J]. Opt Commun, 2005, 247(5): 471-481.

    CLP Journals

    [1] Wu Liang, Liu Yanhong, Deng Ruijie, Yan Zhihui, Jia Xiaojun. Experimental Preparation of Bipartite Polarization Entangled Optical Fields at 795 nm[J]. Acta Optica Sinica, 2017, 37(5): 523002

    Tools

    Get Citation

    Copy Citation Text

    Li Qiang, Deng Xiaowei, Zhang Qiang, Su Xiaolong. Experimental Preparation of a Pure Two-Mode Squeezed State[J]. Acta Optica Sinica, 2016, 36(4): 427001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Sep. 23, 2015

    Accepted: --

    Published Online: Apr. 13, 2016

    The Author Email: Qiang Li (liqiangsxu@126.com)

    DOI:10.3788/aos201636.0427001

    Topics