Journal of Inorganic Materials, Volume. 36, Issue 6, 579(2021)

Synthesis and Gas Separation of Chabazite Zeolite Membranes

Ziyi LI1... Jiajia ZHANG1, Xiaoqin ZOU2, Jiayu ZUO1, Jun LI1, Yingshu LIU1,*, and David Youhong PUI34 |Show fewer author(s)
Author Affiliations
  • 11. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 22. Institute of Chemistry, Northeast Normal University, Changchun 130024, China
  • 33. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
  • 44. Department of Engineering, University of Minnesota, Minneapolis 55455, USA
  • show less
    Figures & Tables(10)
    Proportions of publications and structures for primary 8-membered ring zeolite members
    Schematic diagrams of CHA zeolite membrane preparation methods
    Summary of influences of CHA zeolite membrane synthesis conditions
    Schematic diagram of gas separation mechanisms on CHA zeolite membrane before (left) and after (right) the modulation of membrane surface chemistry[24,36,49,83,87]
    Separation performances of different gas mixtures on CHA zeolite membranes
    Performance of gas with different kinetic diameters on CHA zeolite membranes
    • Table 1. Comparison of CHA zeolite membrane synthesis methods

      View table
      View in Article

      Table 1. Comparison of CHA zeolite membrane synthesis methods

      MethodAdvantageDisadvantageStatus of use
      In-situ synthesis① Simple production equipment② Easy to use① Low success rate② Long synthesis time③ Difficult to controlLess research, basically used for the synthesis of SAPO-34 membrane
      Secondary growth① Simple production equipment② High success rate③ Short synthesis time① Tedious stepsMore research, conducive to large-scale mass production
      Microwave heating① High success rate② Short synthesis time① Tedious steps② High equipment cost③ High energy consumptionNew method, still in basic research stage
    • Table 2. Summary table of preferred conditions for secondary synthesis of SSZ-13 membrane and SAPO-34 membrane

      View table
      View in Article

      Table 2. Summary table of preferred conditions for secondary synthesis of SSZ-13 membrane and SAPO-34 membrane

      Influencing factorsSSZ-13SAPO-34
      Seed conditionsSupportα-Al2O3, mulliteα-Al2O3
      Seed crystalBall milled nano seedsFlake nano seeds
      Seeding methodDip coatingWipe, electrophoretic deposition
      Hydrothermal synthesis conditionsFormula (structure directing agent, Si/Al, water content, cationic species)Non-pure silica: 1SiO2 : (5-100)Al2O3 : (0.1-0.2)NaOH : (0-0.06)KOH(Oriented growth regulation) : (0.05-0.6)TMAdaOH : (0-0.05)TEAOH : (40-120)H2OPure silica : 1SiO2 : (0.5-1.4)TMAdaOH : (0.5-1.4)HF : (3-6)H2O1Al2O3 : (1-2)P2O5 : (0.3-0.6)SiO2 : (1-4)TEAOH : (0-1.6)DPA : (55-400)H2O
      Temperature160-170 ℃180-230 ℃
      Time24-72 h6-30 h
      Calcination conditionsConventional calcination400-550 ℃ (6-12 h), temperature rise and fall rate (0.2-1) ℃/min400-480 ℃ (4-10 h), temperature rise and fall rate (0.5- 2) ℃/min
      Rapid heat treatment700-1000 ℃ (0.5-2 min)+conventional calcination700 ℃ (1-5 min)+ conventional calcination
    • Table 3. Separation performances of H2, hydrocarbon and noble gases on CHA zeolite membranes

      View table
      View in Article

      Table 3. Separation performances of H2, hydrocarbon and noble gases on CHA zeolite membranes

      Serial numberRef.Thickness/μmTemperature/℃Pressure/MPaGas separation, X/YX permeance/ (×10-8, mol·m-2·s-1·Pa-1)Separation selectivity, X/Y
      1Kalipcilar[7]10-4025-H2/n-C4H10148.7
      2Zheng[27]10300.2C2H4/C2H60.2911
      3Feng[72]4.3200.138Kr/Xe1235
      4Yang[82]3.722-H2/C3H88.4810
    • Table 4. Separation performances of CO2/CH4, CO2/N2, N2/CH4, H2/CH4 on CHA zeolite membranes

      View table
      View in Article

      Table 4. Separation performances of CO2/CH4, CO2/N2, N2/CH4, H2/CH4 on CHA zeolite membranes

      Serial numberRef.Thickness/μmTemperature/℃Pressure/MPaGas separation, X/YX permeance/(×10-7, mol·m-2·s-1·Pa-1)Separation selectivity, X/Y
      1Kosinov[14]4-6200.6CO2/CH42.542
      200.6CO2/N22.512
      2Wu[21]6-8200.27CO2/CH42.1178
      200.27N2/CH40.189
      3Song[29]6250.2CO2/CH45.656.5
      250.2N2/CH40.8910
      4Li[31]2250.2CO2/CH41.16213
      250.2N2/CH41.0713
      5Yu[57]1.5-240.9CO2/CH47976
      6Karakiliç[64]2-4220.2CO2/CH42.6176
      7Qiu[66]0.44200.14CO2/CH448153
      8Kida[71]-400.1CO2/CH41754
      400.1H2/CH41134
      9Tang[81]10200.2CO2/CH49.3208
      10Kida[83]5250.1CO2/CH440130
      11Imasaka[98]3400.3CO2/CH415115
      12Maghsoudi[99]20300.1CO2/CH40.3421.6
      13Yu[100]1.330.9CO2/CH48447
      14Li[5]5800.14CO2/CH42.0270
      15Li[19]-240.138CO2/CH41.667
      16Carreon[23]-220.138CO2/CH43.8170
      17Venna[36]-220.138CO2/CH45.0245
      220.138CO2/N22.139
      18Huang[40]2220.074N2/CH44.9311.3
      19Chen[41]2-3250.1CO2/CH41.18160
      20Chang[43]--4CO2/CH46.188
      21Liu[48]3300.1CO2/CH41295
      22Rehman[53]-800.4CO2/CH447.365
      23Liu[55]7-15250.1CO2/N218.529.8
      24Li[74]4-6227CO2/CH40.4100
      25Zhang[78]-204.6CO2/CH48.255
      26Noble[101]-220.14CO2/CH41.2170
      27Shi[102]2-4220.14CO2/CH423.2186
      28Shi[103]4-5220.14CO2/CH416.8256
      29Li[104]3-4CO2/CH413.262
      30Bai[105]0.8-0.2CO2/CH425.370
    Tools

    Get Citation

    Copy Citation Text

    Ziyi LI, Jiajia ZHANG, Xiaoqin ZOU, Jiayu ZUO, Jun LI, Yingshu LIU, David Youhong PUI. Synthesis and Gas Separation of Chabazite Zeolite Membranes[J]. Journal of Inorganic Materials, 2021, 36(6): 579

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Sep. 22, 2020

    Accepted: --

    Published Online: Nov. 25, 2021

    The Author Email: LIU Yingshu (ysliu@ustb.edu.cn)

    DOI:10.15541/jim20200555

    Topics