Acta Optica Sinica, Volume. 42, Issue 23, 2327002(2022)

Thermal Noise Suppression Strategy for Dual-Cavity Mechanical Quantum Gyroscope

Jingyu Wang1、*, Min Nie1, Guang Yang1, Meiling Zhang1, Aijing Sun1, and Changxing Pei2
Author Affiliations
  • 1School of Communications and Information Engineering, Xi′an University of Posts & Telecommunications, Xi′an710121, Shaanxi , China
  • 2State Key Laboratory of Integrated Services Networks, Xidian University, Xi′an710071, Shaanxi , China
  • show less
    References(32)

    [1] 等[M]. 新型陀螺仪技术. 袁书明, 程建华, 译(2013).

         Armenise M N, Armenise M N, Ciminelli C, Ciminelli G, Dell′Olio F, Dell′Olio F et al[M]. Advances in gyroscope technologies. Yuan S M, Cheng J H, Transl(2013).

    [2] Zhao Y C, Cheng J H, Zhao L. Development status and future prospects of gyroscope in inertial navigation[J]. Navigation and Control, 19, 189-196(2020).

    [3] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).

    [4] Jiang Z G, Hu Z F. Analysis on sensitivity of resonant fiber optic gyro[J]. Chinese Journal of Lasers, 44, 0706001(2017).

    [5] Wu Y, Guo J X, Feng X T et al. Atom-light hybrid quantum gyroscope[J]. Physical Review Applied, 14, 064023(2020).

    [6] Bruckner N, Packard R. Large area multiturn superfluid phase slip gyroscope[J]. Journal of Applied Physics, 93, 1798-1805(2003).

    [7] Müller T, Gilowski M, Zaiser M et al. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. The European Physical Journal D, 53, 273-281(2009).

    [8] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391(2014).

    [9] Davuluri S, Li K, Li Y. Gyroscope with two-dimensional optomechanical mirror[J]. New Journal of Physics, 19, 113004(2017).

    [10] Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 23, 1693-1708(1981).

    [11] Kim J M, Cho D. Stabilization of a microwave oscillator to a Fabry-Perot cavity[J]. Journal of the Korean Physical Society, 58, 9-14(2011).

    [12] Li J J, Zhu K D. Nonlinear optical mass sensor with an optomechanical microresonator[J]. Applied Physics Letters, 101, 141905(2012).

    [13] Bradaschia C, Del Fabbro R, Di Virgilio A et al. The VIRGO Project: a wide band antenna for gravitational wave detection[J]. Nuclear Instruments and Methods in Physics Research Section A, 289, 518-525(1990).

    [14] Arcizet O, Cohadon P F, Briant T et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor[J]. Physical Review Letters, 97, 133601(2006).

    [15] Caniard T, Verlot P, Briant T et al. Observation of back-action noise cancellation in interferometric and weak force measurements[J]. Physical Review Letters, 99, 110801(2007).

    [16] Davuluri S. Optomechanics for absolute rotation detection[J]. Physical Review A, 94, 013808(2016).

    [17] Bhattacharya M. Rotational cavity optomechanics[J]. Journal of the Optical Society of America B, 32, B55-B60(2015).

    [18] Davuluri S, Li Y. Unidirectional gyroscope using optomechanics to avoid mode-locking[J]. Journal of Optics, 21, 115402(2019).

    [19] Gigan S, Böhm H R, Paternostro M et al. Self-cooling of a micromirror by radiation pressure[J]. Nature, 444, 67-70(2006).

    [20] Lai D G, Zou F, Hou B P et al. Simultaneous cooling of coupled mechanical resonators in cavity optomechanics[J]. Physical Review A, 98, 023860(2018).

    [21] Wilson-Rae I, Nooshi N, Zwerger W et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J]. Physical Review Letters, 99, 093901(2007).

    [22] Gardiner C W, Zoller P[M]. Quantum noise, 10-13(2004).

    [23] Clerk A A, Devoret M H, Girvin S M et al. Introduction to quantum noise, measurement, and amplification[J]. Reviews of Modern Physics, 82, 1155-1208(2010).

    [24] Giovannetti V, Vitali D. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion[J]. Physical Review A, 63, 023812(2001).

    [25] Collett M J, Gardiner C W. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification[J]. Physical Review A, 30, 1386-1391(1984).

    [26] Annovazzi-Lodi V, Merlo S. Mechanical-thermal noise in micromachined gyros[J]. Microelectronics Journal, 30, 1227-1230(1999).

    [27] Marquardt F, Chen J P, Clerk A A et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Physical Review Letters, 99, 093902(2007).

    [28] Liu X C, Xie Y, Chen Y Q et al. Fiber coupled double microsphere resonator and its mode splitting characteristics[J]. Acta Optica Sinica, 41, 1306017(2021).

    [29] Khitrova G, Gibbs H M, Jahnke F et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 71, 1591-1639(1999).

    [30] Bogoljubov N N, Tolmachov V V, Širkov D V. A new method in the theory of superconductivity[J]. Fortschritte Der Physik, 6, 605-682(1958).

    [31] Anetsberger G, Rivière R, Schliesser A et al. Ultralow dissipation optomechanical resonators on a chip[J]. Nature Photonics, 2, 627-633(2008).

    Tools

    Get Citation

    Copy Citation Text

    Jingyu Wang, Min Nie, Guang Yang, Meiling Zhang, Aijing Sun, Changxing Pei. Thermal Noise Suppression Strategy for Dual-Cavity Mechanical Quantum Gyroscope[J]. Acta Optica Sinica, 2022, 42(23): 2327002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Mar. 31, 2022

    Accepted: Jun. 16, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Wang Jingyu (lanrao_1@163.com)

    DOI:10.3788/AOS202242.2327002

    Topics