Semiconductor Optoelectronics, Volume. 41, Issue 5, 667(2020)
Influence of Charge Carrier Balance on Efficiency of QD-LED
[1] [1] Yang Zhengyu, Voznyy O, Liu Mengxia, et al. All-quantum-dot infrared light-emitting diodes[J]. ACS Nano, 2015, 9(12): 12327-12333.
[2] [2] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488): 354-357.
[3] [3] Cao Fan, Wang Haoran, Shen Piaoyang, et al. High-efficiency and stable quantum dot light-emitting diodes enabled by a solution-processed metal-doped nickel oxide hole injection interfacial layer[J]. Adv. Functional Materials, 2017, 27(42): 104-122.
[4] [4] Yang Yixing, Zheng Ying, Cao Weira, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nature Photon., 2015, 9(4): 259-266.
[5] [5] Hermann S, Shallcross R C, Meerholz K. Simple fabrication of an organic laser by microcontact molding of a distributed feedback grating[J]. Adv. Mater., 2014, 26(34): 6019-6024.
[6] [6] Zhou Xiang, Blochwitz J, Pfeiffer M, et al. Enhanced hole injection into amorphous hole-transport layers of organic light-emitting diodes using controlled p-type doping[J]. Adv. Functional Materials, 2001, 11(4): 310-314.
[7] [7] Mashford B S, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nature Photon., 2013, 7(5): 407-412.
[8] [8] Jin Xiao, Chang Chun, Zhao Weifeng, et al. Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron blocking layer[J]. ACS Appl. Materials & Interfaces, 2018, 10(18): 15803-15811.
[9] [9] Heon Lee, Hoon K, Lee J, et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting device[J]. ACS Nano, 2013, 7(8): 295-302.
[10] [10] Scholz S, Kondakov D, Lussem B, et al. Degradation mechanisms and reactions in organic light-emitting devices[J]. Chemical Rev., 2015, 115(16): 8449-8503.
[11] [11] Prachi R, Francisco P, MIrko P, et al. Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification[J]. ACS Appl. Materials & Interfaces, 2018, 10: 5665-5672.
[12] [12] Zhang Pengfei, Liu Shuhui, Gao Duyang, et al. Click-functionalized compact quantum dots protected by multidentate-imidazole ligands: Conjugation-ready nanotags for living-virus labeling and imaging[J]. J. of the American Chemical Society, 2012, 134(20): 8388-8391.
[13] [13] Javaux C. Thermal activation of non-radiative auger recombination in charged colloidal nanocrystals[J]. Nature Nanotechnol., 2013, 8(3): 206-212.
[14] [14] Bae W K. Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature, 2013, 4: 2661.
[15] [15] Manfredi G, Lova P, Krahne R, et al. Directional fluorescence spectral narrowing in all-polymer microcavities doped with CdSe/CdS dot-in-rod nanocrystals[J]. ACS Photon., 2017, 4(7): 1761-1769.
Get Citation
Copy Citation Text
YANG Mei, ZHENG Liwei, MENG Qi, WANG Xin, LIANG Pei, YUAN Xiaolin, TANG Ying, Sergei I. Pavlov, Pavel N. Brunkov, LIU Zugang. Influence of Charge Carrier Balance on Efficiency of QD-LED[J]. Semiconductor Optoelectronics, 2020, 41(5): 667
Category:
Received: May. 17, 2020
Accepted: --
Published Online: Jan. 19, 2021
The Author Email: Zugang LIU (zgliu78@cjlu.edu.cn)