Journal of Innovative Optical Health Sciences, Volume. 17, Issue 5, 2342002(2024)
A refined analytical model for reconstruction problems in diffuse reflectance spectroscopy
[1] B. Wilson. An Optical Fiber-based Diffuse Reflectance Spectrometer for Non-Invasive Investigation of Photodynamic Sensitizers in vivo(1990).
[2] U. Utzinger, R. R. Richards-Kortum. Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt., 8, 121-147(2003).
[3] A. J. Moy, J. W. Tunnell, M. R. Hamblin, P. Avci, G. K. Gupta. Imaging in Dermatology, 203-215(2016).
[4] P. Pinti, I. Tachtsidis, A. Hamilton, J. Hirsch, C. Aichelburg, S. Gilbert, P. W. Burgess. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci., 1464, 5-29(2020).
[5] I. J. Bigio, S. Fantini. Quantitative Biomedical Optics: Theory, Methods, and Applications(2016).
[6] J. Q. Brown, K. Vishwanath, G. M. Palmer, N. Ramanujam. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer. Curr. Opin. Biotechnol., 20, 119-131(2009).
[7] T. J. Farrell, B. C. Wilson, M. S. Patterson. The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements. Phys. Med. Biol., 37, 2281-2286(1992).
[8] A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt., 35, 2304-2314(1996).
[9] F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Appl. Opt., 39, 6498-6507(2000).
[10] G. Lu, B. Fei. Medical hyperspectral imaging: A review. J. Biomed. Opt., 19, 10901(2014).
[11] F. Larusson, S. Fantini, E. L. Miller. Hyperspectral image reconstruction for diffuse optical tomography. Biomed. Opt. Express, 2, 946-965(2011).
[12] M. O. Visscher, S. A. Burkes, R. Randall Wickett, K. P. Eaton, M. R. Hamblin, P. Avci, G. K. Gupta. Imaging in Dermatology, 519-535(2016).
[13] S. F. Bish, M. Sharma, Y. Wang, N. J. Triesault, J. S. Reichenberg, J. X. Zhang, J. W. Tunnell. Handheld Diffuse Reflectance Spectral Imaging (DRSi) for in-vivo characterization of skin. Biomed. Opt. Express, 5, 573-586(2014).
[14] S. Babu, K. S. Vengalathunadakal, S. K. Nair. Design and development of portable handheld multimodal spectroscopic probe system for skin tissue analysis. Rev. Sci. Instrum., 91, 073104(2020).
[15] S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, O. Nalcioglu. Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms. Technol. Cancer Res. Treat., 2, 563-569(2003).
[16] P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, S. L. Jacques. In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy. J. Biomed. Opt., 10, 034018(2005).
[17] J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, S. Andersson-Engels. Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths. Appl. Opt., 40, 1155-1164(2001).
[18] M. G. Nichols, E. L. Hull, T. H. Foster. Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems. Appl. Opt., 36, 93-104(1997).
[19] R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. Sterenborg. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys. Med. Biol., 44, 967-981(1999).
[20] T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, S. Andersson-Engels. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Appl. Opt., 39, 6487-6497(2000).
[21] A. Kim, M. Roy, F. Dadani, B. C. Wilson. A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Opt. Express, 18, 5580-5594(2010).
[22] N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, P. Jallon. Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis. J. Biomed. Opt., 23, 1-9(2018).
[23] K. Khaksari, G. Blaney, A. Sassaroli, N. Krishnamurthy, T. Pham, S. Fantini. Depth dependence of coherent hemodynamics in the human head. J. Biomed. Opt., 23, 1-9(2018).
[24] D. M. Hueber, S. Fantini, A. E. Cerussi, B. B. Barbieri. New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements. Proc. SPIE 3597, Optical Tomography and Spectroscopy of Tissue III, 618-631(1999).
[25] G. Blaney, R. Donaldson, S. Mushtak, H. Nguyen, L. Vignale, C. Fernandez, T. Pham, A. Sassaroli, S. Fantini. Dual-slope diffuse reflectance instrument for calibration-free broadband spectroscopy. Appl. Sci. (Basel), 11, 1757 (1–14)(2021).
[26] V. Perekatova, A. Kostyuk, M. Kirillin, E. Sergeeva, D. Kurakina, O. Shemagina, A. Orlova, A. Khilov, I. Turchin. VIS-NIR diffuse reflectance spectroscopy system with self-calibrating fiber-optic probe: Study of perturbation resistance. Diagnostics (Basel), 13, 457 (1–20)(2023).
[27] J. C. Finlay, T. H. Foster. Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation. Med. Phys., 31, 1949-1959(2004).
[28] B. Hallacoglu, A. Sassaroli, M. Wysocki, E. Guerrero-Berroa, M. Schnaider Beeri, V. Haroutunian, M. Shaul, I. H. Rosenberg, A. M. Troen, S. Fantini. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy. J. Biomed. Opt., 17, 081406-081401(2012).
[29] B. Lariviere, K. S. Garman, N. L. Ferguson, D. A. Fisher, N. M. Jokerst. Spatially resolved diffuse reflectance spectroscopy endoscopic sensing with custom Si photodetectors. Biomed. Opt. Express, 9, 1164-1176(2018).
[30] J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, N. Subhash. Diffuse reflectance spectroscopy: Diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity. BMJ Open, 1, e000071(2011).
[31] L. L. de Boer, B. G. Molenkamp, T. M. Bydlon, B. H. Hendriks, J. Wesseling, H. J. Sterenborg, T. J. Ruers. Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries. Breast Cancer Res. Treat., 152, 509-518(2015).
[32] E. V. Potapova, V. V. Dremin, E. A. Zherebtsov, I. N. Makovik, A. I. Zherebtsova, A. V. Dunaev, K. V. Podmasteryev, V. V. Sidorov, A. I. Krupatkin, L. S. Khakhicheva, V. F. Muradyan. Evaluation of microcirculatory disturbances in patients with rheumatic diseases by the method of diffuse reflectance spectroscopy. Human Physiol., 43, 222-228(2017).
[33] S. H. Tseng, P. Bargo, A. Durkin, N. Kollias. Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt. Express, 17, 14599-14617(2009).
[34] M. Sharma, E. Marple, J. Reichenberg, J. W. Tunnell. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications. Rev. Sci. Instrum., 85, 083101(2014).
[35] C. K. Hsu, S. Y. Tzeng, C. C. Yang, J. Y. Lee, L. L. Huang, W. R. Chen, M. Hughes, Y. W. Chen, Y. K. Liao, S. H. Tseng. Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy. Biomed. Opt. Express, 6, 390-404(2015).
[36] S. Y. Tzeng, J. Y. Guo, C. C. Yang, C. K. Hsu, H. J. Huang, S. J. Chou, C. H. Hwang, S. H. Tseng. Portable handheld diffuse reflectance spectroscopy system for clinical evaluation of skin: A pilot study in psoriasis patients. Biomed. Opt. Express, 7, 616-628(2016).
[37] F.-H. Ko, G.-H. Tien, M.-J. Chuang, T.-H. Huang, M.-H. Hung, K.-B. Sung. In-vivo diffuse reflectance spectroscopy (DRS) of oral mucosa of normal volunteers. Proc. Biomedical Optics Cong.(2016).
[38] K. G. Bridger, J. R. Roccabruna, T. M. Baran. Optical property recovery with spatially-resolved diffuse reflectance at short source-detector separations using a compact fiber-optic probe. Biomed. Opt. Express, 12, 7388-7404(2021).
[39] J. A. Kim, D. J. Wales, G.-Z. Yang. Optical spectroscopy for in vivo medical diagnosis — a review of the state of the art and future perspectives. Prog. Biomed. Eng., 2, 042001(2020).
[40] G. C. Langhout, J. W. Spliethoff, S. J. Schmitz, A. G. J. Aalbers, M. F. van Velthuysen, B. H. W. Hendriks, T. J. M. Ruers, K. F. D. Kuhlmann. Differentiation of healthy and malignant tissue in colon cancer patients using optical spectroscopy: A tool for image-guided surgery. Lasers Surg. Med., 47, 559-565(2015).
[41] R. Hennessy, W. Goth, M. Sharma, M. K. Markey, J. W. Tunnell. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy. J. Biomed. Opt., 19, 107002(2014).
[42] T. J. Farrell, M. S. Patterson, B. Wilson. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys., 19, 879-888(1992).
[43] S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, A. J. Durkin. Quantitative spectroscopy of superficial turbid media. Opt Lett., 30, 3165-3167(2005).
[44] A. Kienle, M. S. Patterson. Determination of the optical properties of turbid media from a single Monte Carlo simulation. Phys. Med. Biol., 41, 2221-2227(1996).
[45] G. M. Palmer, N. Ramanujam. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Appl. Opt., 45, 1062-1071(2006).
[46] T. Y. Tseng, C. Y. Chen, Y. S. Li, K. B. Sung. Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy. Biomed. Opt. Express, 2, 901-914(2011).
[47] B. S. Nichols, N. Rajaram, J. W. Tunnell. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy. J. Biomed. Opt., 17, 057001(2012).
[48] R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy. J. Biomed. Opt., 18, 037003(2013).
[49] M. Sharma, R. Hennessy, M. K. Markey, J. W. Tunnell. Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy. Biomed. Opt. Express, 5, 40-53(2013).
[50] S. L. Jacques. Optical properties of biological tissues: A review. Phys. Med. Biol., 58, R37-R61(2013).
[51] B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham. Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration. Philos. Trans. R. Soc. Lond. B Biol. Sci., 352, 661-668(1997).
[52] G. Blaney, P. Curtsmith, A. Sassaroli, C. Fernandez, S. Fantini. Broadband absorption spectroscopy of heterogeneous biological tissue. Appl. Opt., 60, 7552-7562(2021).
[53] G. Blaney, A. Sassaroli, T. Pham, C. Fernandez, S. Fantini. Phase dual-slopes in frequency-domain near-infrared spectroscopy for enhanced sensitivity to brain tissue: First applications to human subjects. J. Biophotonics, 13, e201960018(2020).
[54] M. Shokoufi, F. Golnaraghi. Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue. J. Innov. Opt. Health Sci., 12, 1950008(2019).
[55] T. J. Farrell, M. S. Patterson, M. Essenpreis. Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry. Appl. Opt., 37, 1958-1972(1998).
[56] A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagninures, H. van den Bergh. Noninvasive determination of the optical properties of two-layered turbid media. Appl. Opt., 37, 779-791(1998).
[57] R. Hennessy, M. K. Markey, J. W. Tunnell. Impact of one-layer assumption on diffuse reflectance spectroscopy of skin. J. Biomed. Opt., 20, 27001(2015).
[58] G. Blaney, M. Bottoni, A. Sassaroli, C. Fernandez, S. Fantini. Broadband diffuse optical spectroscopy of two-layered scattering media containing oxyhemoglobin, deoxyhemoglobin, water, and lipids. J. Innov. Opt. Health Sci., 15, 2250020 (1–15)(2022).
[59] D. Kurakina, V. Perekatova, E. Sergeeva, A. Kostyuk, I. Turchin, M. Kirillin. Probing depth in diffuse reflectance spectroscopy of biotissues: A Monte Carlo study. Laser Phys. Lett., 19, 035602(2022).
[60] M. S. Kleshnin, A. G. Orlova, M. Yu Kirillin, G. Yu Golubyatnikov, I. V. Turchin. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light. Quantum Electron., 47, 355(2017).
[61] M. Keijzer, W. M. Star, P. R. Storchi. Optical diffusion in layered media. Appl. Opt., 27, 1820-1824(1988).
[62] R. A. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch. Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory. Appl. Opt., 22, 2456-2462(1983).
[63] R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg. Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 11, 2727-2741(1994).
[64] T. Lister, P. A. Wright, P. H. Chappell. Optical properties of human skin. J. Biomed. Opt., 17, 090901 (1–15)(2012).
[65] Y. Shimojo, T. Nishimura, H. Hazama, T. Ozawa, K. Awazu. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis. J. Biomed. Opt., 25, 1-14(2020).
[66] D. Yudovsky, L. Pilon. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl. Opt., 49, 1707-1719(2010).
[67] V. Colas, W. Blondel, G. Khairallah, C. Daul, M. Amouroux. Proposal for a skin layer-wise decomposition model of spatially-resolved diffuse reflectance spectra based on maximum depth photon distributions: A numerical study. Photonics, 8, 444(2021).
[68] O. Kim, J. McMurdy, C. Lines, S. Duffy, G. Crawford, M. Alber. Reflectance spectrometry of normal and bruised human skins: Experiments and modeling. Physiol. Meas., 33, 159-175(2012).
[69] S. Chang, D. Arifler, R. Drezek, M. Follen, R. Richards-Kortum. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: Comparison with Monte Carlo simulations and clinical measurements. J. Biomed. Opt., 9, 511-522(2004).
[70] A. Liemert, A. Kienle. Light diffusion in N-layered turbid media: Steady-state domain. J. Biomed. Opt., 15, 025003(2010).
[71] J. M. Tualle, J. Prat, E. Tinet, S. Avrillier. Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 17, 2046-2055(2000).
Get Citation
Copy Citation Text
Ekaterina Sergeeva, Daria Kurakina, Ilya Turchin, Mikhail Kirillin. A refined analytical model for reconstruction problems in diffuse reflectance spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2024, 17(5): 2342002
Category: Research Articles
Received: Jul. 28, 2023
Accepted: Oct. 22, 2023
Published Online: Aug. 8, 2024
The Author Email: Sergeeva Ekaterina (sergeeva_ea@ipfran.ru)