Journal of the Chinese Ceramic Society, Volume. 52, Issue 11, 3372(2024)
Thermo-Hydro Coupled Model of Concrete Under Freeze–Thaw Cycles Based on Mesoscopic Flow Lattice Network
[3] [3] POWERS T C. Air requirement of frost-resistant concrete[J]. Highway Res Board Proc, 1950, 29: 184–211.
[4] [4] PICKETT G. Theory of volume changes in hardened port land-cement paste during freezing[J]. Highway Res Board Proc, 1953, 32(2): 285–297.
[5] [5] SCHERER G W, VALENZA J J. Mechanisms of frost damage[J]. J Am Ceram Soc, 2005, 7: 209–246.
[6] [6] SETZER M J. Micro-ice-lens formation in porous solid[J]. J Colloid Interface Sci, 2001, 243(1): 193–201.
[7] [7] SETZER M J. Micro ice lens formation, artificial saturation and damage during freeze thaw attack [M]. USA: Wiley, 2005.
[8] [8] VALENZA J J, SCHERER G W. Mechanisms of salt scaling[J]. Mater Struct, 2005, 38(4): 479–488.
[9] [9] COUSSY O, MONTEIRO P J M. Poroelastic model for concrete exposed to freezing temperatures[J]. Cem Concr Res, 2008, 38(1): 40–48.
[10] [10] ERIKSSON D, WAHLBOM D, MALM R, et al. Hygro-thermo-mechanical modeling of partially saturated air-entrained concrete containing dissolved salt and exposed to freeze-thaw cycles[J]. Cem Concr Res, 2021, 141: 106314.
[11] [11] GONG F Y, SICAT E, ZHANG D W, et al. Stress analysis for concrete materials under multiple freeze-thaw cycles[J]. J Adv Concr Technol, 2015, 13(3): 124–134.
[12] [12] ZHOU T, MIRZADEH M, PELLENQ R J, et al. Theory of freezing point depression in charged porous media[J]. Phys Rev E, 2021, 104(4–2): 045102.
[13] [13] ZHOU T T, MIRZADEH M, PELLENQ R J M, et al. Freezing point depression and freeze-thaw damage by nanofluidic salt trapping[J]. Phys Rev Fluids, 2020, 5(12): 124201.
[14] [14] CUSATIS G, PELESSONE D, MENCARELLI A. Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory[J]. Cem Concr Compos, 2011, 33(9): 881–890.
[15] [15] YIN H, CIBELLI A, BROWN S A, et al. Flow lattice model for the simulation of chemistry dependent transport phenomena in cementitious materials[J]. Eur J Environ Civ Eng, 2024, 28(5): 1039–1063.
[16] [16] SHEN L, LI W X, ZHOU X W, et al. Multiphysics lattice discrete particle model for the simulation of concrete thermal spalling[J]. Cem Concr Compos, 2020, 106: 103457.
[17] [17] LI W X, ZHOU X W, CAREY J W, et al. Multiphysics lattice discrete particle modeling (M-LDPM) for the simulation of shale fracture permeability[J]. Rock Mech Rock Eng, 2018, 51(12): 3963–3981.
[18] [18] LIU L, QIN G, ZHOU Y, et al. Freezing behavior of unsaturated porous materials[J]. Constr Build Mater, 2021, 274: 122112.
[19] [19] ZUBER B, MARCHAND J. Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria[J]. Mater Struct, 2004, 37(4): 257–270.
[20] [20] ZUBER B, MARCHAND J. Modeling the deterioration of hydrated cement systems exposed to frost action[J]. Cem Concr Res, 2000, 30(12): 1929–1939.
[21] [21] COUSSY O. Poromechanics[M]. USA: Wiley, 2003.
[22] [22] COUSSY O. Poromechanics of freezing materials[J]. J Mech Phys Solids, 2005, 53(8): 1689–1718.
[23] [23] FAGERLUND G. Determination of pore-size distribution from freezing-point depression[J]. Matriaux Constr, 1973, 6(3): 215–225.
[24] [24] ZENG Q, FEN-CHONG T, LI K F. Elastic behavior of saturated porous materials under undrained freezing[J]. Acta Mech Sin, 2013, 29(6): 9.
[26] [26] LI D, NIU D T, FU Q, et al. Fractal characteristics of pore structure of hybrid Basalt–Polypropylene fibre-reinforced concrete[J]. Cem Concr Compos, 2020, 109: 103555.
[27] [27] GONG F Y, JACOBSEN S. Modeling of water transport in highly saturated concrete with wet surface during freeze/thaw[J]. Cem Concr Res, 2019, 115: 294–307.
[28] [28] ZENG Q, FEN-CHONG T, DANGLA P, et al. A study of freezing behavior of cementitious materials by poromechanical approach[J]. Int J Solids Struct, 2011, 48(22/23): 3267–3273.
[29] [29] CHEN Y J, AL-NESHAWY F, PUNKKI J. Investigation on the effect of entrained air on pore structure in hardened concrete using MIP[J]. Constr Build Mater, 2021, 292: 123441.
[30] [30] GAWIN D, KONCA P, KONIORCZYK M, et al. Modeling the influence of micro-structure and permeability on water freezing in cementitious materials[C]//CONCREEP 10. Vienna, Austria. Reston, VA: American Society of Civil Engineers, 2015: 135479918.
[31] [31] LI K F, ZENG Q. Influence of freezing rate on cryo-damage of cementitious material[J]. J Zhejiang Univ Sci A, 2009, 10(1): 17–21.
[34] [34] JOHANNESSON B. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures[J]. Cem Concr Compos, 2010, 32(1): 73–83.
[35] [35] WU M, JOHANNESSON B, GEIKER M. Determination of ice content in hardened concrete by low-temperature calorimetry[J]. J Therm Anal Calorim, 2014, 115(2): 1335–1351.
Get Citation
Copy Citation Text
ZHANG Li, SHEN Lei, ZHANG Jixun, DONG Yijia, XU Lei, ALKAYEM NIZAR FAISAL. Thermo-Hydro Coupled Model of Concrete Under Freeze–Thaw Cycles Based on Mesoscopic Flow Lattice Network[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3372
Category:
Received: Apr. 22, 2024
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: Lei SHEN (shenl@hhu.edu.cn)