Chinese Journal of Quantum Electronics, Volume. 39, Issue 2, 182(2022)

Experimental generation of optical orbital-angular-momentum multiplexed entanglement and its applications

Xiaoyin XU1、*, Shengshuai LIU1, and Jietai JING1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(59)

    [1] [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [2] [2] Shi B S, Ding D S, Zhang W. Quantum storage of orbital angular momentum states[J]. Progress in Physics, 2017, 37(3): 98-118.

    [3] [3] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

    [4] [4] Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner[J]. Optics Letters, 1997, 22(1): 52-54.

    [5] [5] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

    [6] [6] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

    [7] [7] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

    [8] [8] Krenn M, Huber M, Fickler R, et al. Generation and confirmation of a (100×100)-dimensional entangled quantum system[C]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6243-6247.

    [9] [9] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516-519.

    [10] [10] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

    [11] [11] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338(6107): 640-643.

    [12] [12] Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions[J]. Nature Photonics, 2016, 10(4): 248-252.

    [13] [13] Zhang W, Ding D S, Dong M X, et al. Experimental realization of entanglement in multiple degrees of freedom between two quantum memories[J]. Nature Communications, 2016, 7: 13514.

    [14] [14] Zhang Y W, Agnew M, Roger T, et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light[J]. Nature Communications, 2017, 8: 632.

    [15] [15] Zhao T M, Ihn Y S, Kim Y H. Direct generation of narrow-band hyperentangled photons[J]. Physical Review Letters, 2019, 122(12): 123607.

    [16] [16] Boyer V, Marino A M, Lett P D. Generation of spatially broadband twin beams for quantum imaging[J]. Physical Review Letters, 2008, 100(14): 143601.

    [17] [17] Marino A M, Boyer V, Pooser R C, et al. Delocalized correlations in twin light beams with orbital angular momentum[J]. Physical Review Letters, 2008, 101(9): 093602.

    [18] [18] Lassen M, Leuchs G, Andersen U L. Continuous variable entanglement and squeezing of orbital angular momentum states[J]. Physical Review Letters, 2009, 102(16): 163602.

    [19] [19] Liu K, Guo J, Cai C X, et al. Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator[J]. Physical Review Letters, 2014, 113(17): 170501.

    [20] [20] McCormick C F, Boyer V, Arimondo E, et al. Strong relative intensity squeezing by four-wave mixing in rubidium vapor[J]. Optics Letters, 2006, 32(2): 178-180.

    [21] [21] Boyer V, Marino A M, Pooser R C, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321(5888): 544-547.

    [22] [22] Kumar P, Kolobov M I. Degenerate four-wave mixing as a source for spatially-broadband squeezed light[J]. Optics Communications, 1994, 104(4-6): 374-378.

    [23] [23] Wang H L, Zheng Z, Wang Y X, et al. Generation of tripartite entanglement from cascaded four-wave mixing processes[J]. Optics Express, 2016, 24(20): 23459-23470.

    [24] [24] Lv S C, Jing J T. Generation of quadripartite entanglement from cascaded four-wave-mixing processes[J]. Physical Review A, 2017, 96(4): 043873.

    [25] [25] Wang W. Experimental Construction of Quantum Network Based on Four-Wave Mixing Process[D]. Shanghai: East China Normal University, 2021.

    [26] [26] Pan X Z, Yu S, Zhou Y F, et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor[J]. Physical Review Letters, 2019, 123(7): 070506.

    [27] [27] Coelho A S, Barbosa F A S, Cassemiro K N, et al. Three-color entanglement[J]. Science, 2009, 326(5954): 823-826.

    [28] [28] Simon R. Peres-Horodecki separability criterion for continuous variable systems[J]. Physical Review Letters, 2000, 84(12): 2726-2729.

    [29] [29] Werner R F, Wolf M M. Bound entangled Gaussian states[J]. Physical Review Letters, 2001, 86(16): 3658-3661.

    [30] [30] Li S J, Pan X Z, Ren Y, et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement[J]. Physical Review Letters, 2020, 124(8): 083605.

    [31] [31] Wang W, Zhang K, Jing J T. Large-scale quantum network over 66 orbital angular momentum optical modes[J]. Physical Review Letters, 2020, 125(14): 140501.

    [32] [32] Vidal G, Werner R F. Computable measure of entanglement[J]. Physical Review A, 2002, 65(3): 032314.

    [33] [33] Steffen L, Salathe Y, Oppliger M, et al. Deterministic quantum teleportation with feed-forward in a solid state system[J]. Nature, 2013, 500: 319-322.

    [34] [34] Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 2012, 488: 185-188.

    [35] [35] Ma X S, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward[J]. Nature, 2012, 489: 269-273.

    [36] [36] Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549: 70-73.

    [37] [37] Pfaff W, Hensen B J, Bernien H, et al. Unconditional quantum teleportation between distant solid-state quantum bits[J]. Science, 2014, 345(6169): 532-535.

    [38] [38] Luo Y H, Zhong H S, Erhard M, et al. Quantum teleportation in high dimensions[J]. Physical Review Letters, 2019, 123(7): 070505.

    [39] [39] Hu X M, Zhang C, Liu B H, et al. Experimental high-dimensional quantum teleportation[J]. Physical Review Letters, 2020, 125(23): 230501.

    [40] [40] Liu S S, Lou Y B, Jing J T. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation[J]. Nature Communications, 2020, 11: 3875.

    [41] [41] Takei N, Yonezawa H, Aoki T, et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables[J]. Physical Review Letters, 2005, 94(22): 220502.

    [42] [42] Duan L M, Giedke G, Cirac J I, et al. Inseparability criterion for continuous variable systems[J]. Physical Review Letters, 2000, 84(12): 2722-2725.

    [43] [43] Bennett C H, Wiesner S J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 1992, 69(20): 2881-2884.

    [44] [44] Mattle K, Weinfurter H, Kwiat P G, et al. Dense coding in experimental quantum communication[J]. Physical Review Letters, 1996, 76(25): 4656-4659.

    [45] [45] Li X Y, Pan Q, Jing J T, et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam[J]. Physical Review Letters, 2002, 88(4): 047904.

    [46] [46] Zhang J, Peng K C. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state[J]. Physical Review A, 2000, 62(6): 064302.

    [47] [47] Li X Y, Pan Q, Jing J T, et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam[J]. Physical Review Letters, 2002, 88(4): 047904.

    [48] [48] Jing J T, Zhang J, Yan Y, et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables[J]. Physical Review Letters, 2003, 90(16): 167903.

    [49] [49] Mizuno J, Wakui K, Furusawa A, et al. Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state[J]. Physical Review Letter, 2005, 71(1): 012304.

    [50] [50] Yang W D, Qiu X D, Chen L X. Research progress in detection, imaging, sensing and micromanipulation application of orbital angular momentum of beams[J]. Chinese Journal of Lasers, 2020, 47(5): 0500013.

    [51] [51] Chen L X, Zhang Y Y. Research progress on preparation, manipulation, and remote sensing applications of high-order orbital angular momentum of photons[J]. Acta Physica Sinica, 2015, 64(16): 164210.

    [52] [52] Kong L J, Liu R, Qi W R, et al. Manipulation of eight-dimensional Bell-like states[J]. Science Advances, 2019, 5(6): eaat9206.

    [53] [53] Shi B S, Zhou Z Y. Quantum interface for high-dimensional quantum states encoded in an orbital angular momentum space[J]. Fundamental Research, 2021, 1(1): 88-90.

    [54] [54] Liu S L, Zhou Q, Zhou Z Y, et al. Multiplexing heralded single photons in orbital-angular-momentum space[J]. Physical Review A, 2019, 100(1): 013833.

    [55] [55] Chen Y X, Liu S S, Lou Y B, et al. Orbital angular momentum multiplexed quantum dense coding[J]. Physical Review Letters, 2021, 127(9): 093601.

    [56] [56] Ralph T C, Huntington E H. Unconditional continuous-variable dense coding[J]. Physical Review A, 2002, 66(4): 042321.

    [57] [57] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 2008, 4(4): 282-286.

    [58] [58] Williams B P, Sadlier R J, Humble T S. Superdense coding over optical fiber links with complete Bell-state measurements[J]. Physical Review Letters, 2017, 118(5): 050501.

    [59] [59] Braunstein S L, Kimble H J. Dense coding for continuous variables[J]. Physical Review A, 2000, 61(4): 042302.

    Tools

    Get Citation

    Copy Citation Text

    XU Xiaoyin, LIU Shengshuai, JING Jietai. Experimental generation of optical orbital-angular-momentum multiplexed entanglement and its applications[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 182

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 30, 2021

    Accepted: --

    Published Online: Jul. 22, 2022

    The Author Email: Xiaoyin XU (51190920030@stu.ecnu.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2022.02.002

    Topics