Acta Photonica Sinica, Volume. 50, Issue 1, 67(2021)
Fabrication and Photocatalytic Activity of Heterojunction Type CuO/ZnO Composite Nanowires
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238, 37-38(1972).
[2] DHANANJAY S S, VISHWAS G P, ANTHONY A B. Photocatalytic degradation for environmental applications-a review[J]. Journal of Chemical Technology & Biotechnology, 77, 102-116(2001).
[3] SHIRZADI A, NEZAMZADEH-EJHIEJ A. Enhanced photocatalytic activity of supported CuO-ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample[J]. Journal of Molecular Catalysis A Chemical, 411, 222-229(2016).
[4] WANG Zhumei, LI Yueming, LIAO Runhua. Preparation and photocatalytic properties of NiO/TiO2 nanotubes by hydrothermal method[J]. Acta Photonica Sinica, 48, 81-87(2019).
[5] VAIANO V, MATARANGOLO M, MURCIA J J. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B Environmental, 225, 197-206(2018).
[6] LI Peng, WEI Zhe, WU Tong. Au-ZnO hybrid nanopyramids and their photocatalytic properties[J]. Journal of the American Chemical Society, 133, 5660-5663(2011).
[7] WANG Yuanyou, LIU Tianqing, HUANG Qingli. Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres[J]. Journal of Materials Research, 31, 2317-2328(2016).
[8] MARDIKAR S P, KULKARNI S, ADHYAPAK P V. Sunlight driven highly efficient degradation of methylene blue by CuO-ZnO nanoflowers[J]. Journal of Environmental Chemical Engineering, 8, 102788(2020).
[9] LIU Hairui, HE Xia, HU Yanchun. One-step hydrothermal synthesis of In2O3-ZnO heterostructural composites and their enhanced visible-light photocatalytic activity[J]. Materials Letters, 131, 104-107(2014).
[10] CAO Fa, WANG Ting, JI Xiaohong. Enhanced visible photocatalytic activity of tree-like ZnO/CuO nanostructure on Cu foam[J]. Applied Surface Science, 471, 417-424(2019).
[11] ZHANG Junshan, GUO Linxiao, GAO Pei. Fabrication of CuO films and the study of its photocatalytic properties[J]. Acta Photonica Sinica, 41, 700-703(2012).
[12] ZAINELABDIN A, ZAMAN S, AMIN G. Optical and current transport properties of CuO/ZnO nanocoral p-n heterostructure hydrothermally synthesized at low temperature[J]. Applied Physics A, 108, 921-928(2012).
[13] KURIAKOSE S, AVASTHI D K, MOHAPATRA S. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO-CuO nanocomposites prepared by carbothermal evaporation method[J]. Blstn Journal of Nanotechnology, 6, 928-937(2015).
[14] WEI Shouqiang, CHEN Yuye, MA Yuyan. Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance[J]. Journal of Molecular Catalysis A Chemical, 331, 112-116(2010).
[15] LIU Xiao, DU Baosheng, SUN Ye. Sensitive room temperature photoluminescence-based sensing of H2S with novel CuO-ZnO nanorods[J]. ACS Applied Materials & Interfaces, 8, 16379-16385(2016).
[16] WU Fan, ZHANG Hui, LU Wenhui. Synthesis of ZnO/CuO composite coaxial nanoarrays by combined hydrothermal-solvothermal method and potential for solar cells[J]. Journal of Composite Materials, 49, 2009-2014(2014).
[17] XIAO Gang, GAO Peng, WANG Longqiang. Ultrasonochemical-assisted synthesis of CuO nanorods with high hydrogen storage ability[J]. Journal of Nanomaterials, 439162(2011).
[18] WANG Mahua, ZHU Guangping, XU Chunxiang. Photoluminescent properties in manganese-doped zinc oxide tetropods[J]. Acta Photonica Sinica, 39, 25-28(2010).
[19] SAHU K, BISHT A, KURIAKOSE S. Two-dimensional CuO-ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants[J]. Journal of Physics and Chemistry of Solids, 137, 109223(2019).
[20] WANG Liwei, KANG Yanfei, WANG Yao. CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection[J]. Materials science & Engineering C, 32, 2079-2085(2012).
[21] LEI Xianyu, CAO Yang, CHEN Qianlin. ZIF-8 derived hollow CuO/ZnO material for study of enhanced photocatalytic performance[J]. Colloids and Surfaces A, 568, 1-10(2019).
[22] SANKAR G R, NAVANEETHAN M, MANI G K. Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods[J]. Journal of Alloys and Compounds, 698, 555-564(2017).
[23] RAMBU A P, URSU L, IFTIMIE N. Study on Ni-doped ZnO films as gas sensors[J]. Applied Surface Sscience, 280, 598-604(2013).
[24] MOHAMED R G, FAN Huiqing, TIAN Hailin. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity[J]. Advanced Powder Technology, 28, 953-963(2017).
[25] SIDDIQUI H, QURESHI M S, HAGUE F Z. One-step, template-free hydrothermal synthesis of CuO tetrapods[J]. Optik, 125, 4663-4667(2014).
[26] XU Linhua, SU Jing, ZHENG Gaige. Enhanced photocatalytic performance of porous ZnO thin films by CuO nanoparticles surface modification[J]. Materials Science and Engineering, 248, 114405(2019).
[27] LIU Siqi, HAN Chuang, TANG Zirong. Heterostructured semiconductor nanowire arrays for artificial photosynthesis[J]. Materials Horizons, 3, 270-282(2016).
[28] MA Jianfeng, WANG Kai, LI Liangyin. Visible-light photocatalytic decolorization of Orange II on Cu2O/ZnO nanocomposites[J]. Ceramics International, 41, 2050-2056(2015).
[29] CHANG Tongqin, LI Zijiong, YUN Gaoqian. Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method[J]. Nano-Micro Letters, 5, 163-168(2013).
[30] RAVICHANDRAN K, SINDHUJA E. Photocatalytic efficacy of ZnO films-light intensity and thickness effects[J]. Surface Engineering, 33, 512-520(2017).
Get Citation
Copy Citation Text
Zhe JIA, Shuai REN, Jiejing ZHANG, Shiyong GAO, Jinzhong WANG. Fabrication and Photocatalytic Activity of Heterojunction Type CuO/ZnO Composite Nanowires[J]. Acta Photonica Sinica, 2021, 50(1): 67
Category: Special Issue on Two-dimensional Optical Functional Materials and Devices
Received: --
Accepted: --
Published Online: Mar. 12, 2021
The Author Email: Shiyong GAO (gaoshiyong@hit.edu.cn)