Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2757(2024)

Preparation, Microstructure Evolution and Mechanical Properties of SiC/(HfxTa1–x)C/C Nanocomposites

WANG Zhenyue1... LU Li2, WEN Qingbo2,*, and YU Zhaoju13 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(42)

    [1] [1] IONESCU E, BERNARD S, LUCAS R, et al. Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials[J]. Adv Eng Mater, 2019, 21(8): 1900269.

    [2] [2] GOLLA B R, MUKHOPADHYAY A, BASU B, et al. Review on ultra-high temperature boride ceramics[J]. Prog Mater Sci, 2020, 111:100651.

    [3] [3] TANG S F, HU C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review[J]. J Mater Sci Technol, 2017, 33(2): 117–130.

    [4] [4] FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: Materials for extreme environments[J]. Scr Mater, 2017, 129:94–99.

    [5] [5] HU C L, TANG S F, PANG S Y, et al. Long-term oxidation behaviors of C/SiC composites with a SiC/UHTC/SiC three-layer coating in a wide temperature range[J]. Corros Sci, 2019, 147: 1–8.

    [6] [6] NI D W, CHENG Y, ZHANG J P, et al. Advances in ultra-high temperature ceramics, composites, and coatings[J]. J Adv Ceram, 2022,11(1): 1–56.

    [7] [7] SANI E, MERCATELLI L, SANSONI P, et al. Spectrally selective ultra-high temperature ceramic absorbers for high-temperature solar plants[J]. J Renew Sustain Energy, 2012, 4(3): 033104.

    [8] [8] ZHANG C, BOESL B, AGARWAL A. Oxidation resistance of tantalum carbide-hafnium carbide solid solutions under the extreme conditions of a plasma jet[J]. Ceram Int, 2017, 43: 14798–14806.

    [9] [9] ZENG Q F, PENG J H, OGANOV A R, et al. Prediction of stable hafnium carbides: Stoichiometries, mechanical properties, and electronic structure[J]. Phys Rev B, 2013, 88(21): 214107.

    [10] [10] HE R Q, FANG L M, HAN T X, et al. Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at high pressure[J]. J Eur Ceram Soc, 2022, 42(13):5220–5228.

    [11] [11] JALALY M, GOTOR F J, SAYAGUéS M J. Mechanochemical combustion synthesis of vanadium carbide (VC), niobium carbide(NbC) and tantalum carbide (TaC) nanoparticles[J]. Int J Refract Met Hard Mater, 2019, 79: 177–184.

    [12] [12] THOMAS T, NISAR A, ZHANG C, et al. High strain rate response and mechanical performance of tantalum carbide–hafnium carbide solid solution[J]. Ceram Int, 2023, 49(23): 39099–39106.

    [13] [13] KURBATKINA V V, PATSERA E I, LOGINOV P A, et al. Structure and properties of (Ta1–хZrх)C and (Ta1–хHfх)C solid solutions produced by SHS and hot pressing[J]. Ceram Int, 2021, 47(18): 26205–26214.

    [14] [14] SAVVATIMSKIY A I, ONUFRIEV S V, MUBOYADZHYAN S A.Thermophysical properties of the most refractory carbide Ta0.8Hf0.2C under high temperatures (2000–5000 K)[J]. J Eur Ceram Soc, 2019,39(4): 907–914.

    [15] [15] ZHANG J, WANG S, LI W, et al. Understanding the oxidation behavior of Ta–Hf–C ternary ceramics at high temperature[J]. Corros Sci, 2020, 164: 108348.

    [16] [16] ZHANG C, LOGANATHAN A, BOESL B, et al. Thermal analysis of tantalum carbide-hafnium carbide solid solutions from room temperature to 1400 ℃[J]. Coatings, 2017, 7(8): 111.

    [17] [17] HAN W B, HU P, ZHANG X H, et al. High-temperature oxidation at 1900℃ of ZrB2–xSiC ultrahigh-temperature ceramic composites[J]. J Am Ceram Soc, 2008, 91(10): 3328–3334.

    [18] [18] SIMONENKO E P, SIMONENKO N P, SEVASTYANOV V G, et al.ZrB2/HfB2–SiC ceramics modified by refractory carbides: An overview[J]. Russ J Inorg Chem, 2019, 64(14): 1697–1725.

    [19] [19] WEN Q B, RIEDEL R, IONESCU E. Significant improvement of the short-term high-temperature oxidation resistance of dense monolithic HfC/SiC ceramic nanocomposites upon incorporation of Ta [J]. Corros Sci, 2018, 145: 191–198.

    [20] [20] GHAHREMANI D, EBADZADEH T, MAGHSODIPOUR A. Spark plasma sintering of mullite: Relation between microstructure,properties and spark plasma sintering (SPS) parameters [J]. Ceram Inter, 2015, 41(5): 6409–6416.

    [21] [21] ZHANG M X, ZHAO X R, ZHANG J T, et al. Sintering mechanism of TiB2 reinforced Ti(C,N)-based cermet during reaction spark plasma sintering [J]. Inter J Refract Met Hard Mater, 2024, 118: 106489.

    [22] [22] ZHAO S X, SONG X Y, ZHANG J X, et al. Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC–Co alloy[J]. Mater Sci Eng A, 2008,473(1/2): 323–329.

    [23] [23] WEN Q B, XU Y P, XU B B, et al. Single-source-precursor synthesis of dense SiC/HfCxN1?x-based ultrahigh-temperature ceramic nanocomposites[J]. Nanoscale, 2014, 6(22): 13678–13689.

    [24] [24] WEN Q B, YU Z J, XU Y P, et al. SiC/HfyTa1?yCxN1?x/C ceramic nanocomposites with HfyTa1?yCxN1?x-carbon core–shell nanostructure and the influence of the carbon–shell thickness on electrical properties[J]. J Mater Chem C, 2018, 6(4): 855–864.

    [25] [25] WEN Q B, YU Z J, RIEDEL R, et al. Single-source-precursor synthesis and high-temperature evolution of a boron-containing SiC/HfC ceramic nano/micro composite[J]. J Eur Ceram Soc, 2021,41(5): 3002–3012.

    [26] [26] YU Z J, YANG Y J, MAO K W, et al. Single-source-precursor synthesis and phase evolution of SiC–TaC–C ceramic nanocomposites containing core–shell structured TaC@C nanoparticles[J]. J Adv Ceram, 2020, 9(3): 320–328.

    [27] [27] HUANG T H, YU Z J, HE X M, et al. One-pot synthesis and characterization of a new, branched polycarbosilane bearing allyl groups[J]. Chin Chem Lett, 2007, 18(6): 754–757.

    [28] [28] YU Z J, LI F, ZHU Q K. Single-source-precursor synthesis and phase evolution of NbC–SiC–C ceramic nanocomposites with core–shell structured NbC@C and SiC@C nanoparticles[J]. Adv Powder Mater,2022, 1(1): 100009.

    [29] [29] HUANG M H, FANG Y H, LI R, et al. Synthesis and properties of liquid polycarbosilanes with hyperbranched structures[J]. J Appl Polym Sci, 2009, 113(3): 1611–1618.

    [30] [30] IONESCU E, KLEEBE H J, RIEDEL R. Silicon-containing polymer-derived ceramic nanocomposites (PDC–NCs): Preparative approaches and properties[J]. Chem Soc Rev, 2012, 41(15):5032–5052.

    [31] [31] YU Z J, YANG Y J, MAO K W, et al. Single-source-precursor synthesis and phase evolution of SiC–TaC–C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles[J]. J Adv Ceram,2020, 9(3): 320–328.

    [32] [32] YU Z J, MAO K W, FENG Y. Single-source-precursor synthesis of porous W-containing SiC-based nanocomposites as hydrogen evolution reaction electrocatalysts[J]. J Adv Ceram, 2021, 10(6):1338–1349.

    [33] [33] LI H B, ZHANG L T, CHENG L F, et al. Effect of the polycarbosilane structure on its final ceramic yield[J]. J Eur Ceram Soc, 2008, 28(4):887–891.

    [34] [34] LI H B, ZHANG L T, CHENG L F, et al. Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics[J].J Mater Sci, 2008, 43(8): 2806–2811.

    [35] [35] YU Z J, ZHAN J Y, ZHANG Z H, et al. Preparation, microstructure and magnetic properties of Fe-containing SiC ceramic nanocomposites derived from Fe(CO) 5-modified AHPCS[J]. Ceram Int, 2013, 39(6):6945–6952.

    [36] [36] YU Z J, PEI Y X, LAI S Y, et al. Single-source-precursor synthesis, microstructure and high temperature behavior of TiC–TiB2–SiC ceramic nanocomposites[J]. Ceram Int, 2017, 43(8): 5949–5956.

    [37] [37] LI Z H, WANG Y L, XIONG X, et al. Microstructure and growth behavior of Hf(Ta)C ceramic coating synthesized by low pressure chemical vapor deposition[J]. J Alloys Compd, 2017, 705: 79–88.

    [38] [38] BARROSO G, LI Q, BORDIA R K, et al. Polymeric and ceramic silicon-based coatings—A review[J]. J Mater Chem A, 2019, 7(5):1936–1963.

    [39] [39] WEN Q B, RIEDEL R, IONESCU E. Solid-solution effects on the high-temperature oxidation behavior of polymer-derived (Hf, Ta)C/SiC and (Hf, Ti)C/SiC ceramic nanocomposites[J]. Adv Eng Mater, 2019,21(5): 1800879.

    [40] [40] PENG J H, TIKHONOV E. Improving the mechanical properties of HfC-based ceramics by exploring composition space of Hf1–xTaxC and HfC1–xNx[J]. Comput Mater Sci, 2021, 195: 110464.

    [41] [41] BUYAKOVA S P, DEDOVA E S, WANG D K, et al. Phase evolution during entropic stabilization of ZrC, NbC, HfC, and TiC[J]. Ceram Int,2022, 48(8): 11747–11755.

    [42] [42] SHIROKA T. Introduction to solid state physics[J]. Contemp Phys,2020, 61(3): 221–222.

    Tools

    Get Citation

    Copy Citation Text

    WANG Zhenyue, LU Li, WEN Qingbo, YU Zhaoju. Preparation, Microstructure Evolution and Mechanical Properties of SiC/(HfxTa1–x)C/C Nanocomposites[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2757

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 30, 2024

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: Qingbo WEN (wentsingbo@csu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240090

    Topics