Infrared and Laser Engineering, Volume. 47, Issue 10, 1003003(2018)

Research progress of 3-4 μm antimonide interband cascade laser(invited)

Zhang Yi1,2, Zhang Yu1,2, Yang Cheng′ao1,2, Xie Shengwen1,2, Shao Fuhui1,2, Shang Jinming1,2, Huang Shushan1,2, Yuan Ye1,2, Xu Yingqiang1,2, Ni Haiqiao1,2, and Niu Zhichuan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(25)

    [1] [1] Grau M, Lin C, Dier O, et al. Room-temperature operation of 3.26 μm GaSb-based type-I lasers with quinternary AlGaInAsSb barriers [J]. Appl Phys Lett, 2005, 87(24): 241104.

    [2] [2] Leon Shterengas, Rui Liang, Gela Kipshidze, et al. Type-I quantum well cascade diode lasers emitting near 3 μm [J]. Appl Phys Lett, 2013, 103(12): 121108.

    [3] [3] Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3 μm wavelength range[J]. Semiconductor Lasers and Laser Dynamics Vi, 2014, 9134: 2052115.

    [4] [4] Yang R Q, Pei S S J. Novel type-II quantum cascade lasers [J]. J Appl Phys, 1996, 79(11): 8197-8203.

    [5] [5] Meyer J R, Ho_man C A, Bartoli F J, et al. Type-II quantum-well lasers for the mid-wavelength infrared [J]. Appl Phys Lett, 1995, 67(6): 757-759.

    [6] [6] Thompson G H B, Kirkby P. (GaAl)As lasers with a heterostructure for optical confinement and additional heterojunctions for extreme carrier confinement[J]. IEEE J Quantum Electron, 1973, 9(2): 311-318.

    [7] [7] Sirtori C, Faist J, Capasso F, et al. Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 μm wavelength [J]. Appl Phys Lett, 1995, 66(24): 3242-3244.

    [8] [8] Yang R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlatticeand Microdevices, 1995, 17(1): 1017.

    [9] [9] Lin Chih-Hsiang, Yang Q, Zhang D, et al. Type II interband quantum cascade laser at 3.8 μm [J]. Electronics Letters, 2015, 33(7): 598-599.

    [10] [10] Yang R Q, Bruno J D, Bradshaw J L, et al. High-power interband cascade lasers with quantum efficiency >450%[J]. Electronics Letters, 1999, 35(15): 1254-1255.

    [11] [11] Bradshaw J L, Yang R Q, Bruno J D, et al. High-efficiency interband cascade lasers with peak power exceeding 4 W/facet[J]. Appl Phys Lett, 1999, 75(16): 2362-2364.

    [12] [12] Bradshaw J L, Bruno J D, Pham J T, et al. Continuous wave operation of type-II interband cascade lasers[J].IEEE Proc Optoelectron, 2000, 147: 177-180.

    [13] [13] Bruno J D, Bradshaw J L, Yang R Q, et al. Low-threshold interband cascade lasers with power efficiency exceeding 9%[J]. Appl Phys Lett, 2000, 76(22): 3167-3169.

    [14] [14] Bradshaw J L, Pham J T, Yang R Q, et al. Enhanced CW performance of the interband cascade laser using improved device fabrication [J]. IEEE J Select Top Quantum Electron, 2001, 37(2): 102-105.

    [15] [15] Yang R Q, Bradshaw J L, Bruno J D, et al. Power, efficiency, and thermal characteristics of type-II interband cascade lasers [J]. IEEE J Select Top Quantum Elctron, 2001, 37(2): 282-289.

    [16] [16] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-II interband cascade laser[J].Appl Phys Lett, 2002, 81(3): 397-399.

    [17] [17] Yang R Q, Hill C J, Christensen L E, et al. Mid-IR type-II interband cascade lasers and their applications[C]//Proc of SPIE, 2005, 5624: 413-422.

    [18] [18] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Appl Phys Lett, 2005, 87(15): 151109.

    [19] [19] Hill C J, Yang R Q. MBE growth optimization of Sb-based interband cascade lasers [J]. J Cryst Growth, 2005, 278(1): 167-172.

    [20] [20] Mansour K, Qiu Y, Hill C J, et al. Mid-infrared interband cascade lasers at thermoelectric cooler temperatures[J]. Electron Lett, 2006, 42(18): 1034-1035.

    [21] [21] Yang R Q, Hill C J, Mansour K, et al. Distributed feedback mid-IR interband cascade lasers at thermoelectric cooler temperatures [J]. IEEE J Select Top Quantum Elctron, 2007, 13(5): 1074-1078.

    [22] [22] Kim M, Canedy C L, Bewley W W, et al. Interband cascade laser emitting at 3.75 in continuous wave above room temperature [J]. Appl Phys Lett, 2008, 92(19): 191110.

    [23] [23] Vurgaftman I, Bewley W W, Canedy C L, et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption [J]. Nature Communications, 2011, 2(1): 1585-1595.

    [24] [24] Robert Weih, Martin Kamp, Sven Hofling, et al. Interband cascade lasers with room temperature threshold current densities below 100 A/cm2 [J]. Appl Phys Lett, 2013, 102(23): 231123.

    [25] [25] Bewley W W, Kim C S, Canedy C L, et al. High-power CW performance of 7-stage interband cascade lasers [J]. Opt Express, 2014, 22(7): 7702-7710.

    Tools

    Get Citation

    Copy Citation Text

    Zhang Yi, Zhang Yu, Yang Cheng′ao, Xie Shengwen, Shao Fuhui, Shang Jinming, Huang Shushan, Yuan Ye, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 3-4 μm antimonide interband cascade laser(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 特约专栏-“红外半导体激光器”

    Received: May. 7, 2018

    Accepted: Jun. 12, 2018

    Published Online: Nov. 25, 2018

    The Author Email:

    DOI:10.3788/irla201847.1003003

    Topics