Acta Optica Sinica, Volume. 43, Issue 11, 1124002(2023)

Study on Excitation Efficiency of High-Q-Factor Cavity Plasmon Modes in Spherical PS/Ag Core-Shell Array

Yuheng Guo, Huangjian Yang, Danqi Li, Ping Gu*, and Jing Chen**
Author Affiliations
  • College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
  • show less
    References(38)

    [1] Chen J, Zhang Q, Peng C et al. Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing[J]. IEEE Photonics Technology Letters, 30, 728-731(2018).

    [2] Barik A, Otto L M, Yoo D et al. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays[J]. Nano Letters, 14, 2006-2012(2014).

    [3] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 54, 3-15(1999).

    [4] Nie K Y, Luo S, Ren F F et al. Hybrid plasmonic–dielectric metal-nanowire coupler for high-efficiency broadband nonlinear frequency conversion[J]. Photonics Research, 10, 2337-2342(2022).

    [5] Zhang M D, Wang W T, Sun P et al. A highly efficient nonlinear metasurface based on nanoring-rod structures[J]. Acta Optica Sinica, 41, 1219002(2021).

    [6] Liu S D, Leong E S P, Li G C et al. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation[J]. ACS Nano, 10, 1442-1453(2016).

    [7] Oulton R F. Surface plasmon lasers: sources of nanoscopic light[J]. Materials Today, 15, 26-34(2012).

    [8] Li G, Guan W J, Zhang Y J et al. Polarization-controlled optical switch based on surface plasmon[J]. Acta Photonica Sinica, 49, 0326001(2020).

    [9] Volz T, Reinhard A, Winger M et al. Ultrafast all-optical switching by single photons[J]. Nature Photonics, 6, 605-609(2012).

    [10] Zhang J X, Zhang L D, Xu W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D: Applied Physics, 45, 113001(2012).

    [11] Noginov M A, Zhu G, Bahoura M et al. The effect of gain and absorption on surface plasmons in metal nanoparticles[J]. Applied Physics B, 86, 455-460(2007).

    [12] Wang P F, He F Y, Liu J J et al. Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum[J]. Photonics Research, 10, 2743-2750(2022).

    [13] Wang M Y, Luan R Q, Su Y et al. Fano resonance and sensing characteristics of MIM waveguide with H-type cavity[J]. Laser & Optoelectronics Progress, 59, 2124002(2022).

    [14] Chen Y, Zhang M, Ding Z X et al. Microfluidic refractive index sensor based on all-dielectric metasurfaces[J]. Chinese Journal of Lasers, 49, 0613001(2022).

    [15] Lovera A, Gallinet B, Nordlander P et al. Mechanisms of Fano resonances in coupled plasmonic systems[J]. ACS Nano, 7, 4527-4536(2013).

    [16] Luk'yanchuk B, Zheludev N I, Maier S A et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 9, 707-715(2010).

    [17] He B Q, Li Y H, Cao Y N et al. Tunable Fano resonance based on metal square core structure embedded in MIM resonator[J]. Acta Photonica Sinica, 47, 1123003(2018).

    [18] Chen Y, Luo P, Tian Y N et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled ring cavity with metallic double-slit[J]. Acta Optica Sinica, 37, 0924002(2017).

    [19] Chen H B, Zhang Z D, Yan S B et al. Fano resonance based on a rectangular cavity coupled with a semi-circular cavity[J]. Acta Photonica Sinica, 45, 0823002(2016).

    [20] Lou X W, Cui J J, Dong N N et al. Analysis of sharpness Fano resonance line based on eye-like resonator[J]. Acta Photonica Sinica, 44, 0113002(2015).

    [21] Yang Z J, Hao Z H, Lin H Q et al. Plasmonic Fano resonances in metallic nanorod complexes[J]. Nanoscale, 6, 4985-4997(2014).

    [22] Zhan Y H, Lei D Y, Li X F et al. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing[J]. Nanoscale, 6, 4705-4715(2014).

    [23] Rahmani M, Luk'yanchuk B, Hong M H. Fano resonance in novel plasmonic nanostructures[J]. Laser & Photonics Reviews, 7, 329-349(2013).

    [24] Chang W S, Lassiter J B, Swanglap P et al. A plasmonic Fano switch[J]. Nano Letters, 12, 4977-4982(2012).

    [25] Zhang Y J, Wang H J, Zhang L T et al. Multi-Fano resonant sensing characteristics of MIM waveguide coupled with cloud like cavity[J]. Acta Optica Sinica, 42, 0524002(2022).

    [26] Chen Z, Yu L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system[J]. IEEE Photonics Journal, 6, 4802208(2014).

    [27] Liu S D, Zhang M J, Wang W J et al. Tuning multiple Fano resonances in plasmonic pentamer clusters[J]. Applied Physics Letters, 102, 133105(2013).

    [28] Chen Y T, Chern R L, Lin H Y. Multiple Fano resonances in metallic arrays of asymmetric dual stripes[J]. Applied Optics, 49, 2819-2826(2010).

    [29] Yi Z, Li X, Xu X B et al. Nanostrip-induced high tunability multipolar Fano resonances in a Au ring-strip nanosystem[J]. Nanomaterials, 8, 568(2018).

    [30] Campione S, Liu S, Basilio L I et al. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces[J]. ACS Photonics, 3, 2362-2367(2016).

    [31] Yang H Y, Chen Y P, Liu M Y et al. High Q-factor hybrid metamaterial waveguide multi-Fano resonance sensor in the visible wavelength range[J]. Nanomaterials, 11, 1583(2021).

    [32] Yan Z D, Zhang Z X, Du W et al. Graphene multiple Fano resonances based on asymmetric hybrid metamaterial[J]. Nanomaterials, 10, 2408(2020).

    [33] Gu P, Guo Y H, Chen J et al. Multiple sharp Fano resonances in a deep-subwavelength spherical hyperbolic metamaterial cavity[J]. Nanomaterials, 11, 2301(2021).

    [34] Wu C, Salandrino A, Ni X J et al. Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities[J]. Physical Review X, 4, 021015(2014).

    [35] Penninkhof J J, Sweatlock L A, Moroz A et al. Optical cavity modes in gold shell colloids[J]. Journal of Applied Physics, 103, 123105(2008).

    [36] Gu P, Wan M J, Wu W Y et al. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators[J]. Nanoscale, 8, 10358-10363(2016).

    [37] Gu P, Wan M J, Shen Q et al. Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators[J]. Applied Physics Letters, 107, 141908(2015).

    [38] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    Tools

    Get Citation

    Copy Citation Text

    Yuheng Guo, Huangjian Yang, Danqi Li, Ping Gu, Jing Chen. Study on Excitation Efficiency of High-Q-Factor Cavity Plasmon Modes in Spherical PS/Ag Core-Shell Array[J]. Acta Optica Sinica, 2023, 43(11): 1124002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Nov. 25, 2022

    Accepted: Feb. 9, 2023

    Published Online: Jun. 13, 2023

    The Author Email: Gu Ping (guping@njupt.edu.cn), Chen Jing (jchen@njupt.edu.cn)

    DOI:10.3788/AOS222053

    Topics