Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1631(2024)

Electrochemical Properties of Hierarchical Porous Carbon by Activation of Tripotassium Phosphate

LIU Fangfang... ZHANG Fushuo, SUN Li and NIU Jinan* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(53)

    [1] [1] SONG S J, MA F W, WU G, et al. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors[J]. J Mater Chem A, 2015, 3(35): 18154-18162.

    [2] [2] PU X, LIU M M, LI L X, et al. Wearable textile-based In-plane microsupercapacitors[J]. Adv Energy Mater, 2016, 6(24): 1601254.

    [3] [3] GUO L C, HU P, WEI H. Development of supercapacitor hybrid electric vehicle[J]. J Energy Storage, 2023, 65: 107269.

    [4] [4] MAHFOZ W, DAS H T, SHAH S S, et al. Designing high-performing symmetric supercapacitor by engineering polyaniline on steel mesh surface via electrodeposition[J]. Chem Asian J, 2023, 18(4): e202201223.

    [5] [5] HUANG X Y, YANG Y, ZHAO J L, et al. Formation of hierarchical core-shell hollow Co3S4@NiCo2S4 nanocages with enhanced performance for supercapacitor[J]. J Alloys Compd, 2023, 947: 169413.

    [6] [6] CHEN Y Y, REN H L, RONG D, et al. Stretchable all-in-one supercapacitor enabled by poly(ethylene glycol)-based hydrogel electrolyte with low-temperature tolerance[J]. Polymer, 2023, 270: 125796.

    [7] [7] FENG Y, LI G, WU X L. Potassium gluconate-assisted synthesis of biomass derived porous carbon for high-performance supercapacitor[J]. J Porous Mater, 2023, 30(6): 2113-2120.

    [8] [8] POURJAVADI A, ABDOLMALEKI H, DOROUDIAN M, et al. Novel synthesis route for preparation of porous nitrogen-doped carbons from lignocellulosic wastes for high performance supercapacitors[J]. J Alloys Compd, 2020, 827: 154116.

    [9] [9] BALAMURUGAN J, KARTHIKEYAN G, THANH T D, et al. Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors[J]. J Power Sources, 2016, 308: 149-157.

    [10] [10] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7(11): 845-854.

    [11] [11] YIN J, ZHANG W L, ALHEBSHI N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods, 2020, 4(3): 1900853.

    [12] [12] WU M B, AI P P, TAN M H, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chem Eng J, 2014, 245: 166-172.

    [13] [13] ZHOU J, WANG H, YANG W, et al. Sustainable nitrogen-rich hierarchical porous carbon nest for supercapacitor application[J]. Carbohydr Polym, 2018, 198: 364-374.

    [14] [14] QIU D P, GUAN J Y, LI M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors[J]. Adv Funct Mater, 2019, 29(32): 1903496.

    [15] [15] ZHANG C Z, MAHMOOD N, YIN H, et al. Synthesis of phosphorus- doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Adv Mater, 2013, 25(35): 4932-4937.

    [16] [16] KONDRAT S, PéREZ C R, PRESSER V, et al. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors[J]. Energy Environ Sci, 2012, 5(4): 6474-6479.

    [17] [17] LEI W, GUO J P, WU Z X, et al. Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors[J]. Sci Bull, 2017, 62(14): 1011-1017.

    [18] [18] LIU C, HOU Y, LI Y M, et al. Heteroatom-doped porous carbon microspheres derived from ionic liquid-lignin solution for high performance supercapacitors[J]. J Colloid Interface Sci, 2022, 614: 566-573.

    [19] [19] SEVILLA M, MOKAYA R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage[J]. Energy Environ Sci, 2014, 7(4): 1250-1280.

    [20] [20] CHOI Y S, KIM H, SHIN S H, et al. K3PO4-catalyzed carboxylation of amines to 1, 3-disubstituted ureas: A mechanistic consideration[J]. Appl Catal B Environ, 2014, 144: 317-324.

    [21] [21] LU Q, ZHANG Z B, YANG X C, et al. Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis, 2013, 104: 139-145.

    [22] [22] WATCHARAKITTI J, NIMNUAN J, KRUSONG K, et al. Insight into the molecular weight of hydrophobic starch laurate-based adhesives for paper[J]. Polymers, 2023, 15(7): 1754.

    [23] [23] SU X F, WEI Y G, MA N N, et al. Theoretical insight into oxidation of anilines to azobenzenes catalyzed by hexamolybdate: Outer-sphere electron and proton transfer[J]. J Phys Chem C, 2023, 127(8): 4124-4131.

    [24] [24] XIE S Q, LI Z X, ZHANG W L. Techno-economic analysis of upgrading corn stover-based acetone, n-butanol, and ethanol to higher ketones and alcohols: Fuels or fine chemicalS[J]. ACS Sustain Chem Eng, 2023, 11(8): 3474-3485.

    [25] [25] ANBARASAN P, BAER Z C, SREEKUMAR S, et al. Integration of chemical catalysis with extractive fermentation to produce fuels[J]. Nature, 2012, 491(7423): 235-239.

    [26] [26] JUNG Y C, SHIN K R, KO Y G, et al. Surface characteristics and biological response of titanium oxide layer formed via micro-arc oxidation in K3PO4 and Na3PO4 electrolytes[J]. J Alloys Compd, 2014, 586: S548-S552.

    [27] [27] JIANG Y, LAI C Z, LIU S J, et al. Deactivation of Ce-Ti oxide catalyst by K3PO4 for the selective catalytic reduction of NO with NH3[J]. Aerosol Air Qual Res, 2019, 19(2): 422-430.

    [28] [28] WANG H, PENG H Y, XIAO Z T, et al. Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries[J]. Energy Storage Mater, 2023, 58: 101-109.

    [29] [29] BLANGETTI N, FREYRIA F S, CALVIELLO M C, et al. Photocatalytic degradation of paracetamol under simulated sunlight by four TiO2 commercial powders: An insight into the performance of two sub-micrometric anatase and rutile powders and a nanometric brookite powder[J]. Catalysts, 2023, 13(2): 434.

    [30] [30] SONG J Z, HEINONEN J, SAINIO T. Recovery of ammonium from biomass-drying condensate via ion exchange and its valorization as a fertilizer[J]. Processes, 2023, 11(3): 815.

    [31] [31] WANG J Y, ZHANG S, TANG Y, et al. Copper-catalyzed annulation- trifluoromethyl functionalization of enynones[J]. Org Lett, 2023, 25(14): 2509-2514.

    [32] [32] HSU P C, TSAO P N, CHOU H C, et al. Sodium glycerophosphate use in parenteral nutrition improves mineral metabolism in extremely low birth weight infants[J]. J Pediatr, 2023, 253: 63-71.e2.

    [33] [33] FETISOVA O Y, MIKOVA N M, CHUDINA A I, et al. Kinetic study of pyrolysis of coniferous bark wood and modified fir bark wood[J]. Fire, 2023, 6(2): 59.

    [34] [34] ?STERGAARD M B, CAI B, PETERSEN R R, et al. Impact of pore structure on the thermal conductivity of glass foams[J]. Mater Lett, 2019, 250: 72-74.

    [35] [35] WOOD C, HARRISON A L, POWER I M. Impacts of dissolved phosphorus and soil-mineral-fluid interactions on CO2 removal through enhanced weathering of wollastonite in soils[J]. Appl Geochem, 2023, 148: 105511.

    [36] [36] PIOTROWSKA D, ZNAMIEROWSKA T, SZCZYGIE? I. Phase equilibria in the ErPO4-K3PO4 system[J]. J Therm Anal Calorim, 2013, 113(1): 121-126.

    [37] [37] SAHNOUN R D, CHARFI A, BOUAZIZ J. Effect of K3PO4, K2HPO4, KH2PO4 and H3PO4 as dispersing agents on the rheological behaviour of Kaolin suspensions[J]. Trans Indian Ceram Soc, 2014, 73(3): 193-196.

    [38] [38] LEYTON NARANJO L, ROBACKER C D. Understanding self-incompatibility and exploring the reproduction biology in Linnaeoideae-with a focus in Abelia-to accelerate cultivar development[J]. Sci Hortic, 2023, 309: 111698.

    [39] [39] BAHAMONDE H A, PIMENTEL C, LARA L A, et al. Foliar application of potassium salts to olive, with focus on accompanying anions[J]. Plants, 2023, 12(3): 472.

    [40] [40] SAS O G, DOMíNGUEZ á, GONZáLEZ B. Cleaning phenolic compounds present in water using salting-out effect with DCA-based ionic liquids[J]. Appl Sci, 2023, 13(3): 2009.

    [41] [41] DENG Y, BEADHAM I, YANG T Y, et al. Recovery of palladium using 1-cyanopropyl-3-methylimidazolium chloride based aqueous biphasic system combined with electrodeposition[J]. Mater Chem Phys, 2023, 297: 127387.

    [42] [42] ZHU F, CAO W S, SONG W H, et al. Biomass-derived carbon prepared through a quadruple-functional-salt approach for application in K-ion capacitors[J]. Chem Eng J, 2022, 449: 137561.

    [43] [43] LIU M Y, CAO W S, SONG W H, et al. Potassium oxysalt-assistant strategy towards heteroatom-doped porous carbon electrodes for high-performance Na-ion capacitors[J]. J Power Sources, 2022, 541: 231688.

    [44] [44] XI Y B, YANG D J, QIU X Q, et al. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Ind Crops Prod, 2018, 124: 747-754.

    [45] [45] WANG Q, DUAN C J, XU C Y, et al. Efficient removal of Cd(II) by phosphate-modified biochars derived from apple tree branches: Processes, mechanisms, and application[J]. Sci Total Environ, 2022, 819: 152876.

    [46] [46] ZHANG Y R, WANG R Q, CHEN W P, et al. Microstructure and electrochemical properties of porous carbon derived from biomass[J]. Int J Electrochem Sci, 2023, 18(7): 100190.

    [47] [47] PAN Haoxin, ZHANG Yong, ZHANG Xinyu, et al. J Sci Teach Coll Univ, 2023, 43(5): 54-58.

    [48] [48] DUAN Haoyan, PENG Zhiling, ZHANG Huifang, et al. Chem Res Appl, 2023, 35(5): 1231-1237.

    [49] [49] WANG P T, ZHANG C, WU L L, et al. MOF(ZB)/potassium citrate-derived porous carbon composite and its electrochemical properties[J]. Russ J Electrochem, 2023, 59(4): 299-312.

    [50] [50] WU Jiaqi, CHEN Tingting. J Sci Teach Coll Univ, 2023, 43(3): 56-59.

    [51] [51] XIAO Wei, XIAN Xiaobin, LIANG Guo. Chem Ind Eng Prog, 2023: 1-11.

    [52] [52] JIN Xiaoqing, WANG Xiuwen, MA Zhihu. New Chem Mater, 2023, 51(5): 249-254.

    [53] [53] WU Z W, ZHANG K, MA C H, et al. Synthesis of nitrogen-doped hierarchically porous carbons with ordered mesopores from liquefied wood: Pore architecture manipulation by NH4Cl for improved electrochemical performance[J]. J Energy Storage, 2023, 68: 107619.

    Tools

    Get Citation

    Copy Citation Text

    LIU Fangfang, ZHANG Fushuo, SUN Li, NIU Jinan. Electrochemical Properties of Hierarchical Porous Carbon by Activation of Tripotassium Phosphate[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1631

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 14, 2023

    Accepted: --

    Published Online: Aug. 20, 2024

    The Author Email: Jinan NIU (njn0516@cumt.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230604

    Topics