Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1631(2024)
Electrochemical Properties of Hierarchical Porous Carbon by Activation of Tripotassium Phosphate
[1] [1] SONG S J, MA F W, WU G, et al. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors[J]. J Mater Chem A, 2015, 3(35): 18154-18162.
[2] [2] PU X, LIU M M, LI L X, et al. Wearable textile-based In-plane microsupercapacitors[J]. Adv Energy Mater, 2016, 6(24): 1601254.
[3] [3] GUO L C, HU P, WEI H. Development of supercapacitor hybrid electric vehicle[J]. J Energy Storage, 2023, 65: 107269.
[4] [4] MAHFOZ W, DAS H T, SHAH S S, et al. Designing high-performing symmetric supercapacitor by engineering polyaniline on steel mesh surface via electrodeposition[J]. Chem Asian J, 2023, 18(4): e202201223.
[5] [5] HUANG X Y, YANG Y, ZHAO J L, et al. Formation of hierarchical core-shell hollow Co3S4@NiCo2S4 nanocages with enhanced performance for supercapacitor[J]. J Alloys Compd, 2023, 947: 169413.
[6] [6] CHEN Y Y, REN H L, RONG D, et al. Stretchable all-in-one supercapacitor enabled by poly(ethylene glycol)-based hydrogel electrolyte with low-temperature tolerance[J]. Polymer, 2023, 270: 125796.
[7] [7] FENG Y, LI G, WU X L. Potassium gluconate-assisted synthesis of biomass derived porous carbon for high-performance supercapacitor[J]. J Porous Mater, 2023, 30(6): 2113-2120.
[8] [8] POURJAVADI A, ABDOLMALEKI H, DOROUDIAN M, et al. Novel synthesis route for preparation of porous nitrogen-doped carbons from lignocellulosic wastes for high performance supercapacitors[J]. J Alloys Compd, 2020, 827: 154116.
[9] [9] BALAMURUGAN J, KARTHIKEYAN G, THANH T D, et al. Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors[J]. J Power Sources, 2016, 308: 149-157.
[10] [10] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7(11): 845-854.
[11] [11] YIN J, ZHANG W L, ALHEBSHI N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods, 2020, 4(3): 1900853.
[12] [12] WU M B, AI P P, TAN M H, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chem Eng J, 2014, 245: 166-172.
[13] [13] ZHOU J, WANG H, YANG W, et al. Sustainable nitrogen-rich hierarchical porous carbon nest for supercapacitor application[J]. Carbohydr Polym, 2018, 198: 364-374.
[14] [14] QIU D P, GUAN J Y, LI M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors[J]. Adv Funct Mater, 2019, 29(32): 1903496.
[15] [15] ZHANG C Z, MAHMOOD N, YIN H, et al. Synthesis of phosphorus- doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Adv Mater, 2013, 25(35): 4932-4937.
[16] [16] KONDRAT S, PéREZ C R, PRESSER V, et al. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors[J]. Energy Environ Sci, 2012, 5(4): 6474-6479.
[17] [17] LEI W, GUO J P, WU Z X, et al. Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors[J]. Sci Bull, 2017, 62(14): 1011-1017.
[18] [18] LIU C, HOU Y, LI Y M, et al. Heteroatom-doped porous carbon microspheres derived from ionic liquid-lignin solution for high performance supercapacitors[J]. J Colloid Interface Sci, 2022, 614: 566-573.
[19] [19] SEVILLA M, MOKAYA R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage[J]. Energy Environ Sci, 2014, 7(4): 1250-1280.
[20] [20] CHOI Y S, KIM H, SHIN S H, et al. K3PO4-catalyzed carboxylation of amines to 1, 3-disubstituted ureas: A mechanistic consideration[J]. Appl Catal B Environ, 2014, 144: 317-324.
[21] [21] LU Q, ZHANG Z B, YANG X C, et al. Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis, 2013, 104: 139-145.
[22] [22] WATCHARAKITTI J, NIMNUAN J, KRUSONG K, et al. Insight into the molecular weight of hydrophobic starch laurate-based adhesives for paper[J]. Polymers, 2023, 15(7): 1754.
[23] [23] SU X F, WEI Y G, MA N N, et al. Theoretical insight into oxidation of anilines to azobenzenes catalyzed by hexamolybdate: Outer-sphere electron and proton transfer[J]. J Phys Chem C, 2023, 127(8): 4124-4131.
[24] [24] XIE S Q, LI Z X, ZHANG W L. Techno-economic analysis of upgrading corn stover-based acetone, n-butanol, and ethanol to higher ketones and alcohols: Fuels or fine chemicalS[J]. ACS Sustain Chem Eng, 2023, 11(8): 3474-3485.
[25] [25] ANBARASAN P, BAER Z C, SREEKUMAR S, et al. Integration of chemical catalysis with extractive fermentation to produce fuels[J]. Nature, 2012, 491(7423): 235-239.
[26] [26] JUNG Y C, SHIN K R, KO Y G, et al. Surface characteristics and biological response of titanium oxide layer formed via micro-arc oxidation in K3PO4 and Na3PO4 electrolytes[J]. J Alloys Compd, 2014, 586: S548-S552.
[27] [27] JIANG Y, LAI C Z, LIU S J, et al. Deactivation of Ce-Ti oxide catalyst by K3PO4 for the selective catalytic reduction of NO with NH3[J]. Aerosol Air Qual Res, 2019, 19(2): 422-430.
[28] [28] WANG H, PENG H Y, XIAO Z T, et al. Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries[J]. Energy Storage Mater, 2023, 58: 101-109.
[29] [29] BLANGETTI N, FREYRIA F S, CALVIELLO M C, et al. Photocatalytic degradation of paracetamol under simulated sunlight by four TiO2 commercial powders: An insight into the performance of two sub-micrometric anatase and rutile powders and a nanometric brookite powder[J]. Catalysts, 2023, 13(2): 434.
[30] [30] SONG J Z, HEINONEN J, SAINIO T. Recovery of ammonium from biomass-drying condensate via ion exchange and its valorization as a fertilizer[J]. Processes, 2023, 11(3): 815.
[31] [31] WANG J Y, ZHANG S, TANG Y, et al. Copper-catalyzed annulation- trifluoromethyl functionalization of enynones[J]. Org Lett, 2023, 25(14): 2509-2514.
[32] [32] HSU P C, TSAO P N, CHOU H C, et al. Sodium glycerophosphate use in parenteral nutrition improves mineral metabolism in extremely low birth weight infants[J]. J Pediatr, 2023, 253: 63-71.e2.
[33] [33] FETISOVA O Y, MIKOVA N M, CHUDINA A I, et al. Kinetic study of pyrolysis of coniferous bark wood and modified fir bark wood[J]. Fire, 2023, 6(2): 59.
[34] [34] ?STERGAARD M B, CAI B, PETERSEN R R, et al. Impact of pore structure on the thermal conductivity of glass foams[J]. Mater Lett, 2019, 250: 72-74.
[35] [35] WOOD C, HARRISON A L, POWER I M. Impacts of dissolved phosphorus and soil-mineral-fluid interactions on CO2 removal through enhanced weathering of wollastonite in soils[J]. Appl Geochem, 2023, 148: 105511.
[36] [36] PIOTROWSKA D, ZNAMIEROWSKA T, SZCZYGIE? I. Phase equilibria in the ErPO4-K3PO4 system[J]. J Therm Anal Calorim, 2013, 113(1): 121-126.
[37] [37] SAHNOUN R D, CHARFI A, BOUAZIZ J. Effect of K3PO4, K2HPO4, KH2PO4 and H3PO4 as dispersing agents on the rheological behaviour of Kaolin suspensions[J]. Trans Indian Ceram Soc, 2014, 73(3): 193-196.
[38] [38] LEYTON NARANJO L, ROBACKER C D. Understanding self-incompatibility and exploring the reproduction biology in Linnaeoideae-with a focus in Abelia-to accelerate cultivar development[J]. Sci Hortic, 2023, 309: 111698.
[39] [39] BAHAMONDE H A, PIMENTEL C, LARA L A, et al. Foliar application of potassium salts to olive, with focus on accompanying anions[J]. Plants, 2023, 12(3): 472.
[40] [40] SAS O G, DOMíNGUEZ á, GONZáLEZ B. Cleaning phenolic compounds present in water using salting-out effect with DCA-based ionic liquids[J]. Appl Sci, 2023, 13(3): 2009.
[41] [41] DENG Y, BEADHAM I, YANG T Y, et al. Recovery of palladium using 1-cyanopropyl-3-methylimidazolium chloride based aqueous biphasic system combined with electrodeposition[J]. Mater Chem Phys, 2023, 297: 127387.
[42] [42] ZHU F, CAO W S, SONG W H, et al. Biomass-derived carbon prepared through a quadruple-functional-salt approach for application in K-ion capacitors[J]. Chem Eng J, 2022, 449: 137561.
[43] [43] LIU M Y, CAO W S, SONG W H, et al. Potassium oxysalt-assistant strategy towards heteroatom-doped porous carbon electrodes for high-performance Na-ion capacitors[J]. J Power Sources, 2022, 541: 231688.
[44] [44] XI Y B, YANG D J, QIU X Q, et al. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Ind Crops Prod, 2018, 124: 747-754.
[45] [45] WANG Q, DUAN C J, XU C Y, et al. Efficient removal of Cd(II) by phosphate-modified biochars derived from apple tree branches: Processes, mechanisms, and application[J]. Sci Total Environ, 2022, 819: 152876.
[46] [46] ZHANG Y R, WANG R Q, CHEN W P, et al. Microstructure and electrochemical properties of porous carbon derived from biomass[J]. Int J Electrochem Sci, 2023, 18(7): 100190.
[47] [47] PAN Haoxin, ZHANG Yong, ZHANG Xinyu, et al. J Sci Teach Coll Univ, 2023, 43(5): 54-58.
[48] [48] DUAN Haoyan, PENG Zhiling, ZHANG Huifang, et al. Chem Res Appl, 2023, 35(5): 1231-1237.
[49] [49] WANG P T, ZHANG C, WU L L, et al. MOF(ZB)/potassium citrate-derived porous carbon composite and its electrochemical properties[J]. Russ J Electrochem, 2023, 59(4): 299-312.
[50] [50] WU Jiaqi, CHEN Tingting. J Sci Teach Coll Univ, 2023, 43(3): 56-59.
[51] [51] XIAO Wei, XIAN Xiaobin, LIANG Guo. Chem Ind Eng Prog, 2023: 1-11.
[52] [52] JIN Xiaoqing, WANG Xiuwen, MA Zhihu. New Chem Mater, 2023, 51(5): 249-254.
[53] [53] WU Z W, ZHANG K, MA C H, et al. Synthesis of nitrogen-doped hierarchically porous carbons with ordered mesopores from liquefied wood: Pore architecture manipulation by NH4Cl for improved electrochemical performance[J]. J Energy Storage, 2023, 68: 107619.
Get Citation
Copy Citation Text
LIU Fangfang, ZHANG Fushuo, SUN Li, NIU Jinan. Electrochemical Properties of Hierarchical Porous Carbon by Activation of Tripotassium Phosphate[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1631
Category:
Received: Aug. 14, 2023
Accepted: --
Published Online: Aug. 20, 2024
The Author Email: Jinan NIU (njn0516@cumt.edu.cn)