Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 9, 3387(2023)

Electrochemical Performance of Lithium-Rich Manganese-Based Cathode Materials Improved by Polymorphic MnO2

YUAN Zhongchun*, LI Jia, YAO Mengqin, LIU Fei, MA Jun, and GENG Shuo
Author Affiliations
  • [in Chinese]
  • show less
    References(23)

    [1] [1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.

    [2] [2] KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193.

    [3] [3] LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.

    [4] [4] KONG S, GONG Y N, LIU P, et al. Synthesis of lithium rich layered oxides with controllable structures through a MnO2 template strategy as advanced cathode materials for lithium ion batteries[J]. Ceramics International, 2019, 45(10): 13011-13018.

    [5] [5] PRETTENCIA L, SOUNDARRAJAN E, AM S, et al. Combustion-assisted synthesis of Mn-rich cathode for high performance Li-ion batteries[J]. Journal of Energy Storage, 2022, 48: 104054.

    [6] [6] WANG M H, MA Z, XUE H G, et al. LiFeTiO4/CNTs composite as a cathode material with high cycling stability for lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2018, 5(9): 2306-2313.

    [7] [7] GUO S P, LI C X, CHI Y, et al. Novel 3D network SeSx/NCPAN composites prepared by one-pot in situ solid-state method and its electrochemical performance as cathode material for lithium-ion battery[J]. Journal of Alloys and Compounds, 2016, 664: 92-98.

    [8] [8] WANG B Y, SUN D D, GUO R S, et al. Amorphous MnO2-modified Li3V2(PO4)3/C as high-performance cathode for LIBs: the double effects of surface coating[J]. Journal of Materials Science, 2018, 53(4): 2709-2724.

    [9] [9] WANG Z Y, LIU E Z, GUO L C, et al. Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating[J]. Surface and Coatings Technology, 2013, 235: 570-576.

    [10] [10] WU Y Q, MING J, ZHUO L H, et al. Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance[J]. Electrochimica Acta, 2013, 113: 54-62.

    [11] [11] SHI S J, TU J P, TANG Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method[J]. Electrochimica Acta, 2013, 88: 671-679.

    [12] [12] NI L B, WU Z, ZHAO G J, et al. Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries[J]. Small, 2017, 13(14): 1603466.

    [13] [13] THACKERAY M M, JOHNSON C S, VAUGHEY J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2005, 15(23): 2257-2267.

    [15] [15] HE W, GUO W B, WU H L, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries[J]. Advanced Materials, 2021, 33(50): e2005937.

    [16] [16] ZOU W, XIA F J, SONG J P, et al. Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2019, 318: 875-882.

    [17] [17] JULIEN C M, MAUGER A. Nanostructured MnO2 as electrode materials for energy storage[J]. Nanomaterials, 2017, 7(11): 396.

    [18] [18] KANG B J, JOO J B, LEE J K, et al. Surface modification of cathodes with nanosized amorphous MnO2 coating for high-power application in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2014, 728: 34-40.

    [19] [19] HUANG X, ZHU W C, YAO J Y, et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating[J]. Journal of Materials Chemistry A, 2020, 8(34): 17429-17441.

    [20] [20] WANG N N, DING G P, YANG X H, et al. Membrane MnO2 coated Fe3O4/CNTs negative material for efficient full-pseudocapacitance supercapacitor[J]. Materials Letters, 2019, 255: 126589.

    [21] [21] HE Z J, LI J Y, LUO Z Y, et al. Enhancing cell performance of lithium-rich manganese-based materials via tailoring crystalline states of a coating layer[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49390-49401.

    [22] [22] HAO Z D, XU X L, WANG H, et al. Research progress on surface coating layers on the positive electrode for lithium ion batteries[J]. Nano, 2018, 13(11): 1830007.

    [23] [23] WANG C C, LIN J W, YU Y H, et al. Electrochemical and structural investigation on ultrathin ALD ZnO and TiO2 coated lithium-rich layered oxide cathodes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16941-16950.

    [24] [24] DING P, XU Y L, SUN X F, et al. Synthesis and performance of nano MnO as an anode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2013, 29(2): 293-297.

    Tools

    Get Citation

    Copy Citation Text

    YUAN Zhongchun, LI Jia, YAO Mengqin, LIU Fei, MA Jun, GENG Shuo. Electrochemical Performance of Lithium-Rich Manganese-Based Cathode Materials Improved by Polymorphic MnO2[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3387

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 6, 2023

    Accepted: --

    Published Online: Nov. 3, 2023

    The Author Email: Zhongchun YUAN (yzc3794@163.com)

    DOI:

    Topics