Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1873(2024)
Research Progress on Ti?Mn Based Hydrogen Storage Alloys
[1] [1] DAVID W I F. Effective hydrogen storage: A strategic chemistry challenge[J]. Faraday Discuss, 2011, 151: 399-414.
[2] [2] MURRAY L J, DINC? M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1294-1314.
[3] [3] ZHENG J, ZHOU H, WANG C G, et al. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage[J]. Energy Storage Mater, 2021, 35: 695-722.
[4] [4] ZHAO S L, LIANG L, LIU B Z, et al. Superior dehydrogenation performance of α-AlH3 catalyzed by Li3N: Realizing 8.0 wt.% capacity at 100 ℃[J]. Small, 2022, 18(17): e2107983.
[5] [5] DING N, LI Y C, LIANG F, et al. Highly efficient hydrogen storage capacity of 2.5 wt % above 0.1 MPa using Y and Cr codoped V-based alloys[J]. ACS Appl Energy Mater, 2022, 5(3): 3282-3289.
[6] [6] LIANG L, WANG C L, REN M G, et al. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3[J]. ACS Appl Mater Interfaces, 2021, 13(23): 26998-27005.
[7] [7] LIN H J, LU Y S, ZHANG L T, et al. Recent advances in metastable alloys for hydrogen storage: A review[J]. Rare Met, 2022, 41(6): 1797-1817.
[8] [8] MA Z L, TANG Q K, NI J L, et al. Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4[J]. Chem Eng J, 2022, 433: 134489.
[9] [9] FENG D C, ZHOU D S, ZHAO Z Y, et al. Progress of graphene and loaded transition metals on Mg-based hydrogen storage alloys[J]. Int J Hydrog Energy, 2021, 46(67): 33468-33485.
[10] [10] SHAO H Y, XIN G B, ZHENG J, et al. Nanotechnology in Mg-based materials for hydrogen storage[J]. Nano Energy, 2012, 1(4): 590-601.
[11] [11] ZHANG Y H, SUN H F, ZHANG W, et al. Improvement of substituting La with Ce on hydrogen storage thermodynamics and kinetics of Mg-based alloys[J]. Int J Hydrog Energy, 2021, 46(56): 28719-28733.
[12] [12] LIU J J, ZHU S, ZHENG Z, et al. Long-term hydrogen absorption/desorption properties and structural changes of LaNi4Co alloy with double desorption plateaus[J]. J Alloys Compd, 2019, 778: 681-690.
[13] [13] HAN G, KWON Y, KIM J B, et al. Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell[J]. Appl Energy, 2020, 259: 114175.
[14] [14] LOTOTSKYY M V, TOLJ I, DAVIDS M W, et al. Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module[J]. Int J Hydrog Energy, 2016, 41(31): 13831-13842.
[15] [15] YAO Z, LIANG Z, XIAO X, et al. An impact of hydrogenation phase transformation mechanism on the cyclic stabilizing behavior of Zr0.8Ti0.2Co alloy for hydrogen isotopehandling[J]. Mater Today Energy, 2020, 18: 100554.
[16] [16] YAO Z D, XIAO X Z, LIANG Z Q, et al. Improvement on the kinetic and thermodynamic characteristics of Zr1-xNbxCo (x=0-0.2) alloys for hydrogen isotope storage and delivery[J]. J Alloys Compd, 2019, 784: 1062-1070.
[17] [17] YUKAWA H, TAKAHASHI Y, MORINAGA M. Electronic structures of hydrogen storage compound, TiFe[J]. Comput Mater Sci, 1999, 14(1-4): 291-294.
[18] [18] JUNG J Y, LEE Y S, SUH J Y, et al. Tailoring the equilibrium hydrogen pressure of TiFe via vanadium substitution[J]. J Alloys Compd, 2021, 854: 157263.
[19] [19] JUNG J Y, LEE S I, FAISAL M, et al. Effect of Cr addition on room temperature hydrogenation of TiFe alloys[J]. Int J Hydrog Energy, 2021, 46(37): 19478-19485.
[20] [20] ALAM M M, SHARMA P, HUOT J. On the hydrogen storage properties of cast TiFe mechanically milled with an intermetallic LaNi5 and rare-earth elements La and Ce[J]. Int J Hydrog Energy, 2024, 50: 727-737.
[21] [21] TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689.
[22] [22] LAI Q W, PASKEVICIUS M, SHEPPARD D A, et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art[J]. ChemSusChem, 2015, 8(17): 2789-2825.
[23] [23] YARTYS V A, LOTOTSKYY M V. Laves type intermetallic compounds as hydrogen storage materials: A review[J]. J Alloys Compd, 2022, 916: 165219.
[24] [24] XIE Z C, CHAURAUD D, BITZEK E, et al. Laves phase crystal analysis (LaCA): Atomistic identification of lattice defects in C14 and C15 topologically close-packed phases[J]. J Mater Res, 2021, 36(10): 2010-2024.
[25] [25] BELLOSTA VON COLBE J, ARES J R, BARALE J, et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives[J]. Int J Hydrog Energy, 2019, 44(15): 7780-7808.
[26] [26] HIRSCHER M, YARTYS V A, BARICCO M, et al. Materials for hydrogen-based energy storage-past, recent progress and future outlook[J]. J Alloys Compd, 2020, 827: 153548.
[27] [27] ZHANG Y H, LI C, ZHANG W, et al. Research and application of Ti-Mn-based hydrogen storage alloys[J]. J Iron Steel Res Int, 2023, 30(4): 611-625.
[28] [28] MOHAMMADI A, IKEDA Y, EDALATI P, et al. High-entropy hydrides for fast and reversible hydrogen storage at room temperature: Binding-energy engineering via first-principles calculations and experiments[J]. Acta Mater, 2022, 236: 118117.
[29] [29] STEIN F, LEINEWEBER A. Laves phases: A review of their functional and structural applications and an improved fundamental understanding of stability and properties[J]. J Mater Sci, 2021, 56(9): 5321-5427.
[30] [30] ZHOU P P, XIAO X Z, ZHU X Y, et al. Machine learning enabled customization of performance-oriented hydrogen storage materials for fuel cell systems[J]. Energy Storage Mater, 2023, 63: 102964.
[31] [31] PONSONI J B, ARANDA V, DA SILVA NASCIMENTO T, et al. Design of multicomponent alloys with C14 laves phase structure for hydrogen storage assisted by computational thermodynamic[J]. Acta Mater, 2022, 240: 118317.
[32] [32] LI F, ZHAO J J, TIAN D X, et al. Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles[J]. J Appl Phys, 2009, 105(4): 43707-43707-9.
[33] [33] SARHADDI R, ARABI H, POURARIAN F. Structural, stability and electronic properties of C15-AB2(A=Ti, Zr; B = Cr) intermetallic compounds and their hydrides: An ab initio study[J]. Int J Mod Phys B, 2014, 28(17): 1450105.
[34] [34] REILLY J J, WISWALL R H. Formation and properties of iron titanium hydride[J]. Inorg Chem, 1974, 13(1): 218-222.
[35] [35] MA P, LI W H, WU E D. Hydrogen activation and storage properties of laves phase Ti1-xScxMn1.6V0.4 alloys[J]. Int J Hydrog Energy, 2021, 46(69): 34389-34398.
[36] [36] ZHOU P P, CAO Z M, XIAO X Z, et al. Development of RE-based and Ti-based multicomponent metal hydrides with comprehensive properties comparison for fuel cell hydrogen feeding system[J]. Mater Today Energy, 2023, 33: 101258.
[37] [37] ZHANG Y H, WU S F, WANG L W, et al. Chemisorption solid materials for hydrogen storage nearambient temperature: A review[J]. Front Energy, 2023, 17: 72-101.
[38] [38] HAMMER B, NORSKOV J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376: 238-240.
[39] [39] ZüTTEL A. Materials for hydrogen storage[J]. Mater Today, 2003, 6(9): 24-33.
[40] [40] DEMATTEIS E M, BERTI N, CUEVAS F, et al. Substitutional effects in TiFe for hydrogen storage: A comprehensive review[J]. Mater Adv, 2021, 2(8): 2524-2560.
[41] [41] GSCHNEIDNER K A Jr, PECHARSKY V K. Binary rare earth Laves phases-An overview[J]. Z Für Kristallogr Cryst Mater, 2006, 221(5-7): 375-381.
[42] [42] SEMBOSHI S, MASAHASHI N, HANADA S. Effect of composition on hydrogen absorbing properties in binary TiMn2 based alloys[J]. J Alloys Compd, 2003, 352(1-2): 210-217.
[43] [43] CAO Z M, ZHOU P P, XIAO X Z, et al. Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-based Laves phase alloys for thermal hydrogen compression at mild operating temperatures[J]. Rare Met, 2022, 41(8): 2588-2594.
[44] [44] ZHOU P P, CAO Z M, XIAO X Z, et al. Study on low-vanadium Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage[J]. Int J Hydrog Energy, 2022, 47(3): 1710-1722.
[45] [45] NORITAKE T, AOKI M. Hydrogenation and dehydrogenation cycle properties of Ti-Mn based alloy Ti0.93Zr0.07Mn1.15Cr0.35 in hydrogen gas[J]. Int J Hydrog Energy, 2019, 44(36): 20093-20098.
[46] [46] ZHOU P P, CAO Z M, XIAO X Z, et al. Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage[J]. J Alloys Compd, 2021, 875: 160035.
[47] [47] NAYEBOSSADRI S, BOOK D. Compositional effects on the hydrogen cycling stability of multicomponent Ti-Mn based alloys[J]. Int J Hydrog Energy, 2019, 44(21): 10722-10731.
[48] [48] CAO Z J, OUYANG L Z, WANG H, et al. Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank[J]. Int J Hydrog Energy, 2015, 40(6): 2717-2728.
[49] [49] CHEN Z W, XIAO X Z, CHEN L X, et al. Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x=0-0.1) alloys for hybrid hydrogen storage application[J]. J Alloys Compd, 2014, 585: 307-311.
[50] [50] WU E D, LI W H, LI J. Extraordinary catalytic effect of Laves phase Cr and Mn alloys on hydrogen dissociation and absorption[J]. Int J Hydrog Energy, 2012, 37(2): 1509-1517.
[51] [51] WANG X H, LIU H Z, LI H. A 70 MPa hydrogen-compression system using metal hydrides [J]. Int J Hydrog Energy, 2011, 36: 9079-9085.
[52] [52] GUO X M, WANG S M, LIU X P, et al. Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors[J]. Rare Met, 2011, 30(3): 227-231.
[53] [53] KUMAR V, PUKAZHSELVAN D, TYAGI A K, et al. Hydrogen absorption/desorption characteristics of room temperature ZrMn2-xNixsystem (x=1.25-1.50)[J]. Bull Mater Sci, 2014, 37(3): 655-660.
[54] [54] LI J G, JIANG X J, LI Z N, et al. High-pressure hydrogen storage properties of TixCr1?-?yFeyMn1.0 alloys[J]. Int J Energy Res, 2019, 43(11): 5759-5774.
[55] [55] CAO Z M, ZHOU P P, XIAO X Z, et al. Investigation on Ti-Zr-Cr-Fe-V based alloys for metal hydride hydrogen compressor at moderate working temperatures[J]. Int J Hydrog Energy, 2021, 46(41): 21580-21589.
[56] [56] LOTOTSKYY M V. New model of phase equilibria in metal-hydrogen systems: Features and software[J]. Int J Hydrog Energy, 2016, 41(4): 2739-2761.
[57] [57] ZHANG X, LI B Q, WANG L, et al. Hydrogen storage properties of AB2 type Ti-Zr-Cr-Mn-Fe based alloys[J]. Int J Hydrog Energy, 2024, 51: 193-201.
[58] [58] MATSUDA J, AKIBA E. Lattice defects in V-Ti BCC alloys before and after hydrogenation[J]. J Alloys Compd, 2013, 581: 369-372.
[59] [59] KIM H, SAKAKI K, OGAWA H, et al. Origin of degradation in the reversible hydrogen storage capacity of V1-xTix alloys from the atomic pair distribution function analysis[J]. J Phys Chem C, 2013, 117(50): 26543-26550.
[60] [60] LI D K, ZHANG Q A. Comparative investigation on the hydrogen absorption-desorption characteristics of R2MgNi9 (R=Nd, Gd and Er) compounds[J]. J Alloys Compd, 2021, 885: 160883.
[61] [61] GONG P, NUTTER J, RAINFORCE W M, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels[J]. Sci Adv, 2020, 6: eabb6152.
[62] [62] OGAWA H. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides[J]. J Alloys Compd, 2015, 645: S205-S208.
[63] [63] KURTZ R L, HENRICH V E. Chemisorption of H2O on the surface of Ti2O3: Role of d electrons and ligand geometry[J]. Phys Rev B, 1982, 26(12): 6682-6689.
[64] [64] KIM T, OH J M, CHO G H, et al. Comparison of deoxidation capability of solid solution and intermetallic titanium alloy powders deoxidized by calcium vapor[J]. J Alloys Compd, 2020, 828: 154220.
[65] [65] PAN Y, LU X, HAYAT M D, et al. Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys[J]. Corros Sci, 2020, 166: 108449.
[66] [66] BELLOSTA VON COLBE J M, PUSZKIEL J, CAPURSO G, et al. Scale-up of milling in a 100L device for processing of TiFeMn alloy for hydrogen storage applications: Procedure and characterization[J]. Int J Hydrog Energy, 2019, 44(55): 29282-29290.
[67] [67] EDALATI K, MATSUO M, EMAMI H, et al. Impact of severe plastic deformation on microstructure and hydrogen storage of titanium- iron-manganese intermetallics[J]. Scr Mater, 2016, 124: 108-111.
[68] [68] EDALATI K, NOVELLI M, ITANO S, et al. Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: Investigation using ultrasonic SMAT and HPT processes[J]. J Alloys Compd, 2018, 737: 337-346.
[69] [69] ZHU J, DAI L, YU Y, et al. A direct electrochemical route from oxides to TiMn2 hydrogen storage alloy[J]. Chin J Chem Eng, 2015, 23(11): 1865-1870.
[70] [70] KANG H, ZHU L, LI S Y, et al. Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO[J]. Nat Catal, 2023, 6: 1062-1072.
[71] [71] TAKEICHI N. “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material[J]. Int J Hydrog Energy, 2003, 28: 1121-1129.
[72] [72] MIAO G D, LI P, LIU C R, et al. Review of thermal management technology for metal hydride reaction beds[J]. Sustain Energy Fuels, 2023, 7(9): 2025-2041.
[73] [73] DAVIDS M W, LOTOTSKYY M, MALINOWSKI M, et al. Metal hydride hydrogen storage tank for light fuel cell vehicle[J]. Int J Hydrog Energy, 2019, 44(55): 29263-29272.
[74] [74] PATIL S D, RAM GOPAL M. Analysis of a metal hydride reactor for hydrogen storage[J]. Int J Hydrog Energy, 2013, 38(2): 942-951.
[75] [75] KROKOS C A, NIKOLIC D, KIKKINIDES E S, et al. Modeling and optimization of multi-tubular metal hydride beds for efficient hydrogen storage[J]. Int J Hydrog Energy, 2009, 34(22): 9128-9140.
[76] [76] ANBARASU S, MUTHUKUMAR P, MISHRA S C. Thermal modeling of LmNi4.91Sn0.15 based solid state hydrogen storage device with embedded cooling tubes[J]. Int J Hydrog Energy, 2014, 39(28): 15549-15562.
[77] [77] WANG D, WANG Y Q, HUANG Z N, et al. Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor[J]. Energy, 2019, 173: 443-456.
[78] [78] WANG D, WANG Y Q, WANG F, et al. Hydrogen storage in branch mini-channel metal hydride reactor: Optimization design, sensitivity analysis and quadratic regression[J]. Int J Hydrog Energy, 2021, 46(49): 25189-25207.
[79] [79] WANG D, WANG Y Q, WANG F, et al. Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency[J]. Appl Energy, 2022, 308: 118389.
[80] [80] GUPTA S, SHARMA V K. Design and analysis of metal hydride reactor embedded with internal copper fins and external water cooling[J]. Int J Energy Res, 2021, 45(2): 1836-1856.
[81] [81] BAI X S, YANG W W, TANG X Y, et al. Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels [J]. Energy, 2021, 232: 121101.
[82] [82] BAI X S, YANG W W, TANG X Y, et al. Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study[J]. Energy, 2021, 220: 119738.
[83] [83] ALQAHTANI T. Enhancement of the metal hydride hydraulic pump efficiency by integrating a phase change material[J]. Int J Energy Res, 2022, 46(13): 18120-18133.
Get Citation
Copy Citation Text
ZHANG He, LIN Fanxin, LIU Yong, MIAO Guodong, WANG Zhen, LIU Chunrong, LI Ping, QU Xuanhui. Research Progress on Ti?Mn Based Hydrogen Storage Alloys[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1873
Special Issue:
Received: Dec. 25, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Ping LI (ustbliping@126.com)