Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1873(2024)

Research Progress on Ti?Mn Based Hydrogen Storage Alloys

ZHANG He... LIN Fanxin, LIU Yong, MIAO Guodong, WANG Zhen, LIU Chunrong, LI Ping* and QU Xuanhui |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(83)

    [1] [1] DAVID W I F. Effective hydrogen storage: A strategic chemistry challenge[J]. Faraday Discuss, 2011, 151: 399-414.

    [2] [2] MURRAY L J, DINC? M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1294-1314.

    [3] [3] ZHENG J, ZHOU H, WANG C G, et al. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage[J]. Energy Storage Mater, 2021, 35: 695-722.

    [4] [4] ZHAO S L, LIANG L, LIU B Z, et al. Superior dehydrogenation performance of α-AlH3 catalyzed by Li3N: Realizing 8.0 wt.% capacity at 100 ℃[J]. Small, 2022, 18(17): e2107983.

    [5] [5] DING N, LI Y C, LIANG F, et al. Highly efficient hydrogen storage capacity of 2.5 wt % above 0.1 MPa using Y and Cr codoped V-based alloys[J]. ACS Appl Energy Mater, 2022, 5(3): 3282-3289.

    [6] [6] LIANG L, WANG C L, REN M G, et al. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3[J]. ACS Appl Mater Interfaces, 2021, 13(23): 26998-27005.

    [7] [7] LIN H J, LU Y S, ZHANG L T, et al. Recent advances in metastable alloys for hydrogen storage: A review[J]. Rare Met, 2022, 41(6): 1797-1817.

    [8] [8] MA Z L, TANG Q K, NI J L, et al. Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4[J]. Chem Eng J, 2022, 433: 134489.

    [9] [9] FENG D C, ZHOU D S, ZHAO Z Y, et al. Progress of graphene and loaded transition metals on Mg-based hydrogen storage alloys[J]. Int J Hydrog Energy, 2021, 46(67): 33468-33485.

    [10] [10] SHAO H Y, XIN G B, ZHENG J, et al. Nanotechnology in Mg-based materials for hydrogen storage[J]. Nano Energy, 2012, 1(4): 590-601.

    [11] [11] ZHANG Y H, SUN H F, ZHANG W, et al. Improvement of substituting La with Ce on hydrogen storage thermodynamics and kinetics of Mg-based alloys[J]. Int J Hydrog Energy, 2021, 46(56): 28719-28733.

    [12] [12] LIU J J, ZHU S, ZHENG Z, et al. Long-term hydrogen absorption/desorption properties and structural changes of LaNi4Co alloy with double desorption plateaus[J]. J Alloys Compd, 2019, 778: 681-690.

    [13] [13] HAN G, KWON Y, KIM J B, et al. Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell[J]. Appl Energy, 2020, 259: 114175.

    [14] [14] LOTOTSKYY M V, TOLJ I, DAVIDS M W, et al. Metal hydride hydrogen storage and supply systems for electric forklift with low-temperature proton exchange membrane fuel cell power module[J]. Int J Hydrog Energy, 2016, 41(31): 13831-13842.

    [15] [15] YAO Z, LIANG Z, XIAO X, et al. An impact of hydrogenation phase transformation mechanism on the cyclic stabilizing behavior of Zr0.8Ti0.2Co alloy for hydrogen isotopehandling[J]. Mater Today Energy, 2020, 18: 100554.

    [16] [16] YAO Z D, XIAO X Z, LIANG Z Q, et al. Improvement on the kinetic and thermodynamic characteristics of Zr1-xNbxCo (x=0-0.2) alloys for hydrogen isotope storage and delivery[J]. J Alloys Compd, 2019, 784: 1062-1070.

    [17] [17] YUKAWA H, TAKAHASHI Y, MORINAGA M. Electronic structures of hydrogen storage compound, TiFe[J]. Comput Mater Sci, 1999, 14(1-4): 291-294.

    [18] [18] JUNG J Y, LEE Y S, SUH J Y, et al. Tailoring the equilibrium hydrogen pressure of TiFe via vanadium substitution[J]. J Alloys Compd, 2021, 854: 157263.

    [19] [19] JUNG J Y, LEE S I, FAISAL M, et al. Effect of Cr addition on room temperature hydrogenation of TiFe alloys[J]. Int J Hydrog Energy, 2021, 46(37): 19478-19485.

    [20] [20] ALAM M M, SHARMA P, HUOT J. On the hydrogen storage properties of cast TiFe mechanically milled with an intermetallic LaNi5 and rare-earth elements La and Ce[J]. Int J Hydrog Energy, 2024, 50: 727-737.

    [21] [21] TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689.

    [22] [22] LAI Q W, PASKEVICIUS M, SHEPPARD D A, et al. Hydrogen storage materials for mobile and stationary applications: Current state of the art[J]. ChemSusChem, 2015, 8(17): 2789-2825.

    [23] [23] YARTYS V A, LOTOTSKYY M V. Laves type intermetallic compounds as hydrogen storage materials: A review[J]. J Alloys Compd, 2022, 916: 165219.

    [24] [24] XIE Z C, CHAURAUD D, BITZEK E, et al. Laves phase crystal analysis (LaCA): Atomistic identification of lattice defects in C14 and C15 topologically close-packed phases[J]. J Mater Res, 2021, 36(10): 2010-2024.

    [25] [25] BELLOSTA VON COLBE J, ARES J R, BARALE J, et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives[J]. Int J Hydrog Energy, 2019, 44(15): 7780-7808.

    [26] [26] HIRSCHER M, YARTYS V A, BARICCO M, et al. Materials for hydrogen-based energy storage-past, recent progress and future outlook[J]. J Alloys Compd, 2020, 827: 153548.

    [27] [27] ZHANG Y H, LI C, ZHANG W, et al. Research and application of Ti-Mn-based hydrogen storage alloys[J]. J Iron Steel Res Int, 2023, 30(4): 611-625.

    [28] [28] MOHAMMADI A, IKEDA Y, EDALATI P, et al. High-entropy hydrides for fast and reversible hydrogen storage at room temperature: Binding-energy engineering via first-principles calculations and experiments[J]. Acta Mater, 2022, 236: 118117.

    [29] [29] STEIN F, LEINEWEBER A. Laves phases: A review of their functional and structural applications and an improved fundamental understanding of stability and properties[J]. J Mater Sci, 2021, 56(9): 5321-5427.

    [30] [30] ZHOU P P, XIAO X Z, ZHU X Y, et al. Machine learning enabled customization of performance-oriented hydrogen storage materials for fuel cell systems[J]. Energy Storage Mater, 2023, 63: 102964.

    [31] [31] PONSONI J B, ARANDA V, DA SILVA NASCIMENTO T, et al. Design of multicomponent alloys with C14 laves phase structure for hydrogen storage assisted by computational thermodynamic[J]. Acta Mater, 2022, 240: 118317.

    [32] [32] LI F, ZHAO J J, TIAN D X, et al. Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles[J]. J Appl Phys, 2009, 105(4): 43707-43707-9.

    [33] [33] SARHADDI R, ARABI H, POURARIAN F. Structural, stability and electronic properties of C15-AB2(A=Ti, Zr; B = Cr) intermetallic compounds and their hydrides: An ab initio study[J]. Int J Mod Phys B, 2014, 28(17): 1450105.

    [34] [34] REILLY J J, WISWALL R H. Formation and properties of iron titanium hydride[J]. Inorg Chem, 1974, 13(1): 218-222.

    [35] [35] MA P, LI W H, WU E D. Hydrogen activation and storage properties of laves phase Ti1-xScxMn1.6V0.4 alloys[J]. Int J Hydrog Energy, 2021, 46(69): 34389-34398.

    [36] [36] ZHOU P P, CAO Z M, XIAO X Z, et al. Development of RE-based and Ti-based multicomponent metal hydrides with comprehensive properties comparison for fuel cell hydrogen feeding system[J]. Mater Today Energy, 2023, 33: 101258.

    [37] [37] ZHANG Y H, WU S F, WANG L W, et al. Chemisorption solid materials for hydrogen storage nearambient temperature: A review[J]. Front Energy, 2023, 17: 72-101.

    [38] [38] HAMMER B, NORSKOV J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376: 238-240.

    [39] [39] ZüTTEL A. Materials for hydrogen storage[J]. Mater Today, 2003, 6(9): 24-33.

    [40] [40] DEMATTEIS E M, BERTI N, CUEVAS F, et al. Substitutional effects in TiFe for hydrogen storage: A comprehensive review[J]. Mater Adv, 2021, 2(8): 2524-2560.

    [41] [41] GSCHNEIDNER K A Jr, PECHARSKY V K. Binary rare earth Laves phases-An overview[J]. Z Für Kristallogr Cryst Mater, 2006, 221(5-7): 375-381.

    [42] [42] SEMBOSHI S, MASAHASHI N, HANADA S. Effect of composition on hydrogen absorbing properties in binary TiMn2 based alloys[J]. J Alloys Compd, 2003, 352(1-2): 210-217.

    [43] [43] CAO Z M, ZHOU P P, XIAO X Z, et al. Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-based Laves phase alloys for thermal hydrogen compression at mild operating temperatures[J]. Rare Met, 2022, 41(8): 2588-2594.

    [44] [44] ZHOU P P, CAO Z M, XIAO X Z, et al. Study on low-vanadium Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage[J]. Int J Hydrog Energy, 2022, 47(3): 1710-1722.

    [45] [45] NORITAKE T, AOKI M. Hydrogenation and dehydrogenation cycle properties of Ti-Mn based alloy Ti0.93Zr0.07Mn1.15Cr0.35 in hydrogen gas[J]. Int J Hydrog Energy, 2019, 44(36): 20093-20098.

    [46] [46] ZHOU P P, CAO Z M, XIAO X Z, et al. Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage[J]. J Alloys Compd, 2021, 875: 160035.

    [47] [47] NAYEBOSSADRI S, BOOK D. Compositional effects on the hydrogen cycling stability of multicomponent Ti-Mn based alloys[J]. Int J Hydrog Energy, 2019, 44(21): 10722-10731.

    [48] [48] CAO Z J, OUYANG L Z, WANG H, et al. Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank[J]. Int J Hydrog Energy, 2015, 40(6): 2717-2728.

    [49] [49] CHEN Z W, XIAO X Z, CHEN L X, et al. Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x=0-0.1) alloys for hybrid hydrogen storage application[J]. J Alloys Compd, 2014, 585: 307-311.

    [50] [50] WU E D, LI W H, LI J. Extraordinary catalytic effect of Laves phase Cr and Mn alloys on hydrogen dissociation and absorption[J]. Int J Hydrog Energy, 2012, 37(2): 1509-1517.

    [51] [51] WANG X H, LIU H Z, LI H. A 70 MPa hydrogen-compression system using metal hydrides [J]. Int J Hydrog Energy, 2011, 36: 9079-9085.

    [52] [52] GUO X M, WANG S M, LIU X P, et al. Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors[J]. Rare Met, 2011, 30(3): 227-231.

    [53] [53] KUMAR V, PUKAZHSELVAN D, TYAGI A K, et al. Hydrogen absorption/desorption characteristics of room temperature ZrMn2-xNixsystem (x=1.25-1.50)[J]. Bull Mater Sci, 2014, 37(3): 655-660.

    [54] [54] LI J G, JIANG X J, LI Z N, et al. High-pressure hydrogen storage properties of TixCr1?-?yFeyMn1.0 alloys[J]. Int J Energy Res, 2019, 43(11): 5759-5774.

    [55] [55] CAO Z M, ZHOU P P, XIAO X Z, et al. Investigation on Ti-Zr-Cr-Fe-V based alloys for metal hydride hydrogen compressor at moderate working temperatures[J]. Int J Hydrog Energy, 2021, 46(41): 21580-21589.

    [56] [56] LOTOTSKYY M V. New model of phase equilibria in metal-hydrogen systems: Features and software[J]. Int J Hydrog Energy, 2016, 41(4): 2739-2761.

    [57] [57] ZHANG X, LI B Q, WANG L, et al. Hydrogen storage properties of AB2 type Ti-Zr-Cr-Mn-Fe based alloys[J]. Int J Hydrog Energy, 2024, 51: 193-201.

    [58] [58] MATSUDA J, AKIBA E. Lattice defects in V-Ti BCC alloys before and after hydrogenation[J]. J Alloys Compd, 2013, 581: 369-372.

    [59] [59] KIM H, SAKAKI K, OGAWA H, et al. Origin of degradation in the reversible hydrogen storage capacity of V1-xTix alloys from the atomic pair distribution function analysis[J]. J Phys Chem C, 2013, 117(50): 26543-26550.

    [60] [60] LI D K, ZHANG Q A. Comparative investigation on the hydrogen absorption-desorption characteristics of R2MgNi9 (R=Nd, Gd and Er) compounds[J]. J Alloys Compd, 2021, 885: 160883.

    [61] [61] GONG P, NUTTER J, RAINFORCE W M, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels[J]. Sci Adv, 2020, 6: eabb6152.

    [62] [62] OGAWA H. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides[J]. J Alloys Compd, 2015, 645: S205-S208.

    [63] [63] KURTZ R L, HENRICH V E. Chemisorption of H2O on the surface of Ti2O3: Role of d electrons and ligand geometry[J]. Phys Rev B, 1982, 26(12): 6682-6689.

    [64] [64] KIM T, OH J M, CHO G H, et al. Comparison of deoxidation capability of solid solution and intermetallic titanium alloy powders deoxidized by calcium vapor[J]. J Alloys Compd, 2020, 828: 154220.

    [65] [65] PAN Y, LU X, HAYAT M D, et al. Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys[J]. Corros Sci, 2020, 166: 108449.

    [66] [66] BELLOSTA VON COLBE J M, PUSZKIEL J, CAPURSO G, et al. Scale-up of milling in a 100L device for processing of TiFeMn alloy for hydrogen storage applications: Procedure and characterization[J]. Int J Hydrog Energy, 2019, 44(55): 29282-29290.

    [67] [67] EDALATI K, MATSUO M, EMAMI H, et al. Impact of severe plastic deformation on microstructure and hydrogen storage of titanium- iron-manganese intermetallics[J]. Scr Mater, 2016, 124: 108-111.

    [68] [68] EDALATI K, NOVELLI M, ITANO S, et al. Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: Investigation using ultrasonic SMAT and HPT processes[J]. J Alloys Compd, 2018, 737: 337-346.

    [69] [69] ZHU J, DAI L, YU Y, et al. A direct electrochemical route from oxides to TiMn2 hydrogen storage alloy[J]. Chin J Chem Eng, 2015, 23(11): 1865-1870.

    [70] [70] KANG H, ZHU L, LI S Y, et al. Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO[J]. Nat Catal, 2023, 6: 1062-1072.

    [71] [71] TAKEICHI N. “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material[J]. Int J Hydrog Energy, 2003, 28: 1121-1129.

    [72] [72] MIAO G D, LI P, LIU C R, et al. Review of thermal management technology for metal hydride reaction beds[J]. Sustain Energy Fuels, 2023, 7(9): 2025-2041.

    [73] [73] DAVIDS M W, LOTOTSKYY M, MALINOWSKI M, et al. Metal hydride hydrogen storage tank for light fuel cell vehicle[J]. Int J Hydrog Energy, 2019, 44(55): 29263-29272.

    [74] [74] PATIL S D, RAM GOPAL M. Analysis of a metal hydride reactor for hydrogen storage[J]. Int J Hydrog Energy, 2013, 38(2): 942-951.

    [75] [75] KROKOS C A, NIKOLIC D, KIKKINIDES E S, et al. Modeling and optimization of multi-tubular metal hydride beds for efficient hydrogen storage[J]. Int J Hydrog Energy, 2009, 34(22): 9128-9140.

    [76] [76] ANBARASU S, MUTHUKUMAR P, MISHRA S C. Thermal modeling of LmNi4.91Sn0.15 based solid state hydrogen storage device with embedded cooling tubes[J]. Int J Hydrog Energy, 2014, 39(28): 15549-15562.

    [77] [77] WANG D, WANG Y Q, HUANG Z N, et al. Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor[J]. Energy, 2019, 173: 443-456.

    [78] [78] WANG D, WANG Y Q, WANG F, et al. Hydrogen storage in branch mini-channel metal hydride reactor: Optimization design, sensitivity analysis and quadratic regression[J]. Int J Hydrog Energy, 2021, 46(49): 25189-25207.

    [79] [79] WANG D, WANG Y Q, WANG F, et al. Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency[J]. Appl Energy, 2022, 308: 118389.

    [80] [80] GUPTA S, SHARMA V K. Design and analysis of metal hydride reactor embedded with internal copper fins and external water cooling[J]. Int J Energy Res, 2021, 45(2): 1836-1856.

    [81] [81] BAI X S, YANG W W, TANG X Y, et al. Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels [J]. Energy, 2021, 232: 121101.

    [82] [82] BAI X S, YANG W W, TANG X Y, et al. Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study[J]. Energy, 2021, 220: 119738.

    [83] [83] ALQAHTANI T. Enhancement of the metal hydride hydraulic pump efficiency by integrating a phase change material[J]. Int J Energy Res, 2022, 46(13): 18120-18133.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG He, LIN Fanxin, LIU Yong, MIAO Guodong, WANG Zhen, LIU Chunrong, LI Ping, QU Xuanhui. Research Progress on Ti?Mn Based Hydrogen Storage Alloys[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1873

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 25, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Ping LI (ustbliping@126.com)

    DOI:10.14062/j.issn.0454-5648.20230983

    Topics