Electro-Optic Technology Application, Volume. 37, Issue 2, 1(2022)

Applications of Liquid SBS in High-power Lasers (Invited)

WANG Hongli1, LI Sensen2, WANG Yulei3, and LV Zhiwei3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(99)

    [2] [2] NICOLAE D, MARKSTEINER U, REITEBUCH O, et al. Airborne direct-detection and coherent wind lidar measurements over the north Atlantic in 2015 supporting Esa’s aeolus mission[J]. EPJ Web of Conferences, 2018, 17602011.

    [5] [5] Z-W FAN, J-S QIU, X-X TANG, et al. A 100 Hz 3.31 J all-solid-state high beam quality Nd:Yag laser for space debris detecting [J]. Acta Physica Sinica, 2017, 66(5): 054205.

    [6] [6] ZHANG X, DAI J, HE T, et al. Overview of the Chinese lidar satellite development[C]//Overview of the Chinese lidar satellite development, LIDAR imaging detection and target recognition 2017. International Society for Optics and Photonics, 10605: 106050T.

    [7] [7] ZHANG F, CAI H B, ZHOU W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets [J]. Nature Physics, 2020, 16(7): 810-814.

    [9] [9] CAMPBELL E, SANGSTER T, GONCHAROV V, et al. Direct-drive laser fusion: status, plans and future[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2189): 20200011.

    [10] [10] X Z A, C L B, M Z A, et al. Chemical, microstructure, and mechanical property of tial alloys produced by high-power direct laser deposition[J]. 2022,

    [11] [11] STEEN W M, MAZUMDER J. Biomedical laser processes and equipment[J]. Springer London, 2010.

    [13] [13] KONG H J, PARK S, CHA S, et al. Conceptual design of the Kumgang laser: a high-power coherent beam combination laser using Sc-Sbs-Pcms towards a dream laser[J]. High Power Laser Science and Engineering, 2015, 3.

    [14] [14] ZHAO W, SHEN X, LIU H, et al. Effect of high repetition rate on Dimension and morphology of micro-hole drilled in metals by picosecond ultra-short pulse laser[J]. Optics and Lasers in Engineering, 2020, 124: 105811. 105811-105811.105818.

    [15] [15] SALTER P S, BOOTH M J. Adaptive optics in laser processing[J]. Light: Science&Applications, 2019, 8(1): 1-16.

    [16] [16] BAUMLER W, WEISS K T. Laser assisted tattoo removal-state of the art and new developments [J]. Photochem Photobiol Sci, 2019, 18(2): 349-358.

    [18] [18] KLEIN J. Recent developments in widely tunable and high peak power ultrafast faser sources and their adoption in biological imaging[C]//Recent Developments in Widely Tunable and High Peak Power Ultrafast Laser Sources and Their Adoption in Biological Imaging, Multiphoton Microscopy in the Biomedical Sciences XVI.

    [20] [20] CHAN N P, HO S G, SHEK S Y, et al. A case series of facial depigmentation associated with low fluence Q-switched 1064 nm Nd:Yag laser for skin rejuvenation and melasma[J]. Lasers Surg Med, 2010, 42(8): 712-719.

    [21] [21] QUINN M N, JUKNA V, EBISUZAKI T, et al. Space-based application of the can laser to lidar and orbital debris remediation[J]. European Physical Journal-Special Topics, 2015, 224(13): 2645-2655.

    [22] [22] QIAO Z, SUN W, ZHANG N, et al. Brain cell laser powered by deep-learning-enhanced laser modes[J]. Advanced Optical Materials, 2021, 9(22): 2101421.

    [23] [23] AFSHAARVALID S, DEVRELIS V, MUNCH J. Nature of intensity and phase modulations in stimulated Brillouin scattering[J]. Physical Review A, 1998, 57(5): 3961-3971.

    [25] [25] Garmire E. Perspectives on stimulated Brillouin scattering[J]. New Journal of Physics, 2017, 19(1): 011003.

    [26] [26] L Yudong, W Yuhe, Z Yuqin, et al. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 331-19.

    [27] [27] NIEVES O A, ARNOLD M D, STEEL M, et al. Noise and pulse cynamics in backward stimulated Brillouin scattering[J]. Opt Express, 2021, 29(3): 3132-3146.

    [28] [28] GUO X, HASI W, HONG Z, et al. Research on the Sbs mediums used in high peak power laser system and their selection principle[J]. Laser and Particle Beams, 2012, 30(4): 525-530.

    [29] [29] GOWER M C. Krf laser-induced breakdown of gases [J]. Optics Communications, 1981, 36(1): 43-45.

    [30] [30] HAGENLOCKER E E, MINCK RW, RADO W G. Effects of phonon lifetime on stimulated optical scattering in gases[J]. Physical Review, 1967, 154(2): 226-233.

    [31] [31] THéVENAZ L, YANG F, GYGER F. Giant Brillouin amplification in gas using hollow-core fiber[C]//Giant Brillouin Amplification in Gas Using Hollow-Core Fiber, 2021 Optical Fiber Communications Conference and Exhibition (OFC), IEEE: 1-3.

    [32] [32] HON D T. Pulse compression by stimulated Brillouin scattering[J]. Opt Lett, 1980, 5(12): 516.

    [33] [33] YOSHIDA H, FUJITA H, NAKATSUKA M, et al. Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage[J]. Optical Engineering, 1997, 36(9): 2557-2562.

    [34] [34] YOSHIDA H, FUJITA H, NAKASUKA M, et al. High resistant phase-conjugated stimulated Brillouin scattering mirror using fused-silica glass for Nd:YAG laser system[J]. Japanese Journal of Applied Physics,1999,38(5A): L521.

    [35] [35] SHIN J S, KONG H J. Phase fluctuation of self-phase-controlled stimulated Brillouin scattering waves via K8 glass[J]. Optics Communications, 2012, 285(13-14): 2977-2979.

    [36] [36] YOSHIDA H, NAKATSUKA M, FUJITA H, et al. High-energy operation of a stimulated Brillouin scattering mirror in an L-Arginine phosphate monohydrate crystal[J]. Applied Optics, 1997, 36(30): 7783-7787.

    [37] [37] YOSHIMURA M, MORI Y, SASAKI T, et al. Efficient stimulated Brillouin scattering in the organic crystal deuterated L-Arginine phosphate monohydrate[J]. Josa B, 1998, 15(1): 446-450.

    [38] [38] BAI Z X, YUAN H, LIU Z H, et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 2018, 75626-645.

    [39] [39] BREWER R G, RIECKHOFF K E. Stimulated Brillouin scattering in liquids[J]. Physical Review Letters, 1964, 13(11): 334-336.

    [40] [40] FENG C, XU X, DIELS J C. Generation of 300 ps laser pulse with 1.2 J energy by Stimulated Brillouin Scattering in water at 532 Nm [J]. Opt Lett, 2014, 39(12): 3367-3370.

    [41] [41] HASI W, LV Z, HE W, et al. Experimental investigation on the improvement of Sbs characteristics by purifying the mediums[J]. Chinese Optics Letters, 2004, 2(12): 718-721.

    [43] [43] YOSHIDA H, KMETIK V, FUJITA H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror[J]. Appl Opt, 1997, 36(16): 3739-3744.

    [44] [44] PARK H, LIM C, YOSHIDA H, et al. Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications&Review Papers, 2006, 45(6A): 5073-5075.

    [45] [45] HASI W L, LU Z W, GONG S, et al. Investigation of stimulated Brillouin scattering media perfluoro-compound and perfluoropolyether with a low absorption coefficient and high power-load ability[J]. Appl Opt, 2008, 47(7): 1010-1014.

    [46] [46] WANG H, CHA S, KONG H J, et al. Rotating off-centered lens in Sbs phase conjugation mirror for high-repetition-rate operation[J]. Opt Express, 2019, 27(7): 9895-9905.

    [47] [47] ZEl'DOVICH B Y, POPOVICHEV V, RAGUl'SKII V, et al. Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtem-Brillouin scattering [J]. JETP Letters, 1972, 15(3): 109-122.

    [48] [48] BRIGNON A. Phase conjugate laser optics[M]. John Wiley&Sons, 2003.

    [49] [49] CARR I, HANNA D. Performance of a Nd:YAG oscillator/ampflifier with phase-conjugation via stimulated Brillouin scattering[J]. Applied Physics B, 1985, 36(2): 83-92.

    [50] [50] OMATSU T, KONG H, PARK S, et al. The current trends in Sbs and phase conjugation[J]. Laser and Particle Beams, 2012, 30(1): 117-174.

    [54] [54] MENZEL R, EICHLER H J. Temporal and spatial reflectivity of focused beams in stimulated Brillouin scattering for phase conjugation[J]. Phys Rev A, 1992, 46(11): 7139-7149.

    [55] [55] PARK S, CHA S, OH J, et al. Coherent beam combination using self-phase lockedstimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser ceneration[J]. Opt Express, 2016, 24(8): 8641-8646.

    [56] [56] PIERRE R J S, INJEYAN H, HILYARD R C, et al. One joule per pulse, 100 Watt, diode-pumped, near diffraction limited, phase conjugated, Nd:YAG master oscillator power amplifier[C]//Advanced Solid State Lasers, Optical Society of America: DL1.

    [57] [57] PIERRE R S, HOLLEMAN G W, VALLEY M, et al. Active tracker laser (Atlas)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 64-70.

    [58] [58] PIERRE R S, MORDAUNT D W, INJEYAN H, et al. Diode array pumped kilowatt laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 53-58.

    [59] [59] DANE C B, ZAPATA L E, NEUMAN W A, et al. Design and operation of a 150 W near diffraction-limited laser amplifier with Sbs wavefront correction[J]. IEEE Journal of Quantum Electronics, 1995, 31(1): 148-163.

    [60] [60] EICHLER H J, HAASE A, MENZEL R. 100-Watt average output power 1.2 diffraction-limited beam from pulsed neodymium single-rod amplifier with Sbs phase-conjugation[J]. IEEE Journal of Quantum Electronics, 1995, 31(7): 1265-1269.

    [61] [61] A H, EICHLER H-J, 0 Mehl 500-W average output power Mopa system with high beam quality by phase conjugation[J]. CLEO, 1998.

    [62] [62] KARPUKHIN S. Q-switched 1-J 100-pps rod YAG laser with Sbs mirror[C]// Laser Optics' 95: Solid State Lasers, SPIE, 2772: 170-176.

    [63] [63] KMETIK V, YOSHIDA H, FUJITA H, et al. Very high energy Sbs phase conjugation and pulse compression in fluorocarbon liquids[C]// Advanced High-Power Lasers, SPIE, 3889: 818-826.

    [64] [64] KIRIYAMA H, YAMAKAWA K, NAGAI T, et al. 360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate[J]. Optics Letters, 2003, 28(18): 1671-1673.

    [65] [65] YOSHIDA H, NAKATSUKA M, HATAE T, et al. YAG laser perfomance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson scattering diagnostics at Jt-60[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes&Review Papers, 2003, 42(2A): 439-442.

    [68] [68] FAN Z W, QIU J S, KANG Z J, et al. High beam quality 5 J, 200 Hz Nd:YAG laser system[J]. Light: Science&Applications, 2017, 6(3): e17004.

    [69] [69] KANG Z, FAN Z, HUANG Y, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type Sbs-Pcm[J]. Opt Express, 2018, 26(6): 6560-6571.

    [70] [70] WANG Y L, LV Z W, GUO Q, et al. A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate[J]. Chinese Optics Letters, 2010, 8(11): 1064-1066.

    [71] [71] ZHANG L, ZHANG D, SHI J L, et al. Investigations on coherence of stimulated Brillouin scattering excited by a single-mode-pulsed laser[J]. Applied Physics B-Lasers and Optics, 2012, 109(1): 137-141.

    [72] [72] ZHANG L, ZHANG D, YANG Z, et al. Experimental investigation on line width compression of stimulated Brillouin scattering in water[J]. Applied Physics Letters, 2011, 98(22): 221106.

    [74] [74] YOSHIDA H, O A, F H, et al. Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse[J]. Laser Original, 2000, 29(2): 6.

    [75] [75] DANE C B, NEUMAN W A, HACKEL L A. High-energy Sbs pulse-compression[J]. IEEE Journal of Quantum Electronics, 1994, 30(8): 1907-1915.

    [76] [76] TARASOV A A, CHU H. Subnanosecond Nd:YAG laser with multipass cell for Sbs pulse compression[J]. Solid State Lasers XXVI: Technology and Devices, 2017, 10082100820Q.

    [79] [79] NESHEV D, VELCHEV I, MAJEWSKI W A, et al. Sbs pulse compression to 200 ps in a compact single-cell setup[J]. Applied Physics B-Lasers and Optics, 1999, 68(4): 671-675.

    [80] [80] BAI Z X, WANG Y L, LU Z W, et al. Efficient Kdp frequency doubling Sbs pulse compressed 532 nm hundred picosecond laser[J]. Optik, 2016, 127(20): 9201-9205.

    [81] [81] MITRA A, YOSHIDA H, FUJITA H, et al. Sub nanosecond pulse generation bystimulated Brillouin scattering using fc-75 in an integrated setup with laser energy up to 1.5 J[J]. Japanese Journal of Applied Physics, 2006, 45(3A): 1607-1611.

    [82] [82] YOSHIDA H, HATAE T, FUJITA H, et al. A high-energy 160-Ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1 064 nm wavelength[J]. Opt Express, 2009, 17(16): 13654-13662.

    [83] [83] FEDOSEJEVS R, OFFENBERGER A. Subnanosecond pulses from a Krf laser pumped Sf6 Brillouin amplifier[J]. IEEE Joural of Quantum Electronics, 2003, 21(10): 1558-1562.

    [84] [84] KONG H J. Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering[C]//Average Power Lasers and Intense Beam Applications, International Society for Optics and Photonics, 6454: 64540E.

    [85] [85] LIU Z, WANG Y, WANG Y, et al. Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime[J]. Opt Express, 2018, 26(5): 5701-5710.

    [86] [86] HASI W L J, GONG S, LU Z W, et al. Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering using medium with short phonon lifetime[J]. Laser and Particle Beams, 2008, 26(4): 511-516.

    [87] [87] ZHU X H, WANG G L, WU D H. Numerical investigation of the dependence of stimulated Brillouin scattering threshold on the pump intensity fluctuation[J]. Laser and Particle Beams, 2019, 37(2): 231-234.

    [88] [88] YUAN H, WANG Y, LU Z, et al. Fluctuation initiation of stokes signal and its effect ostimulated Brillouin scattering pulse compression[J]. Opt Express, 2017, 25(13): 14378-14388.

    [89] [89] XU X, FENG C, DIELS J-C. High energy pulse compression through two-pulse interaction mediated by stimulated Brillouin scattering in liquid fluorocarbon[C]//Science and Innovations, Optical Society of America: CM3L 4.

    [90] [90] FENG C, XU X, DIELS J C. Multi-joule, sub-200ps laser pulse generation Via Sbs sub-phonon lifetime pulse compression[C]// Cleo: Science&Innovations.

    [91] [91] KULAGIN O, KOTOV A, SERGEEV A, et al. Eye-safe picosecond Nd: YAG laser with Brillouin and Raman pulse compression[C]// Advanced Solid-State Photonics. Optical Society of America: MC4.

    [92] [92] KUWAHARA K, TAKAHASHI E, MATSUMOTO Y, et al. Short-pulse generation by saturated Krf laser amplification of a steep stokes pulse produced by two-step stimulated Brillouin scattering[J]. Josa B, 2000, 17(11): 1943-1947.

    [93] [93] OGINO J, MIYAMOTO S, MATSUYAMA T, et al. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression [J]. Applied Physics Express, 2014, 7(12): 122702.

    [94] [94] LIU Z H, WANG Y L, WANG H L, et al. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown[J]. Applied Physics Letters, 2017, 110(24): 241108.

    [95] [95] FENG C, XU X, DIELS J C. Spatio-temporal characterization of pulses obtained from a high-energy sub-nanosecond laser system[J]. Appl Opt, 2016, 55(7): 1603-1612.

    [96] [96] WANG H, CHA S, KONG H J, et al. Minimizing cross sectional pulse width difference between central and edge parts of Sbs compressed beam[J]. Opt Express, 2019, 27(2): 1646-1659.

    [97] [97] FENG C, DIELS J C, XU X, et al. Ring-shaped backward stimulated Raman scattering Driven by stimulated Brillouin scattering[J]. Opt Express, 2015, 23(13): 17035-17045.

    [98] [98] LI H W, ZHAO B, JIN L W, et al. Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification[J]. Photonics Research, 2019, 7(7): 748-753.

    [99] [99] LIU Z H, WANG Y L, WANG Y R, et al. Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering[J]. Chinese Optics Letters, 2016, 14(9): 091901-091904.

    [100] [100] WANG Y L, LIU Z H, YUAN H, et al. A promotion of stability for temporal compression based on Sbs in an interferometric scheme[J]. Journal of Modern Optics, 2016, 63(17): 1734-1740.

    [101] [101] WANG H, CHA S, KONG H J, et al. Sub-nanosecond stimulated Brillouin scattering pulse compression using Ht270 for KHz repetition rate operation[J]. Opt Express, 2019, 27(21): 29789-29802.

    [102] [102] ZHU X, WANG Y, LU Z, et al. Generation of 360 ps laser eulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme[J]. Opt Express, 2015, 23(18): 23318-23328.

    [105] [105] DAMZEN M, VLAD V, MOCOFANESCU A, et al. Stimulated Brillouin scattering: fundamentals and applications[M]. CRC Press, 2003.

    [106] [106] ANDREEV N F, PALASHOV O V, PASMANIK G A, et al. Four-channel pulse-periodic Nd: YAG laser with diffraction-limited output radiation[J]. Quantum Electronics, 1997, 27(7): 565.

    [107] [107] BOWERS M W, BOYD R W, HANKLA A K. Brillouin-enhanced four-wave-mixing Vector phase-conjugate mirror with beam-combining capability[J]. Optics Letters, 1997, 22(6): 360-362.

    [108] [108] ROCKWELL D, GIULIANO C. Coherent coupling of laser gainmedia using phase conjugation [J]. Optics Letters, 1986, 11(3): 147-149.

    [109] [109] KONG H J, PARK S, CHA S, et al. 0.4 J/10 Ns/10 KHz-4 KW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications[J]. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10(6): 962-966.

    [110] [110] LOREE T R, WATKINS D E, JOHNSON T M, et al. Phase locking two beams by means of seeded Brillouin scattering[J]. Optics Letters, 1987, 12(3): 178-180.

    [111] [111] KONG H J, SHIN J S, YOON J W, et al. Wave-front dividing beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors[J]. Nuclear Fusion, 2009, 49(12): 125002.

    [112] [112] KONG H J, SHIN J S, PARK S, et al. Four-beam combined laser system with the phase controlled stimulated Brillouin scattering phase conjugation mirrors[C]//Four-Beam Combined Laser System with the Phase Controlled Stimulated Brillouin Scattering Phase Conjugation Mirrors. Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America: WA2_1.

    [113] [113] YOSHIDA H, NAKATSUKA M, HATAE T, et al. Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on Sbs phase conjugation mirror for plasma diagnostics[J]. Japanese Journal of Applied Physics, 2004, 43(8A): L1038.

    [115] [115] CUI C, WANG Y, LU Z, et al. Joule-level 10 Hz non-collinear multi-pump Sbs amplifier with high energy extraction efficiency used for laser beams combination[C]//Joule-Level 10 Hz Non-Collinear Multi-Pump Sbs Amplifier with High Energy Extraction Efficiency Used for Laser Beams Combination, CLEO: QELS_Fundamental Science, Optical Society of America: JTu2A, 59.

    [119] [119] WANG S, LV Z, LIN D, et al. Investigation of serial coherent laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 2007, 25(1): 79-83.

    [120] [120] WANG Y, LU Z, WANG S, et al. Investigation on efficiency of non-collinear serial laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 2009, 27(4): 651-655.

    Tools

    Get Citation

    Copy Citation Text

    WANG Hongli, LI Sensen, WANG Yulei, LV Zhiwei. Applications of Liquid SBS in High-power Lasers (Invited)[J]. Electro-Optic Technology Application, 2022, 37(2): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 20, 2022

    Accepted: --

    Published Online: Jul. 21, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics