Optics and Precision Engineering, Volume. 31, Issue 21, 3096(2023)
Progress in spectral imaging technology of digital micromirror devices
[1] A F H GOETZ. Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sensing of Environment, 113, S5-S16(2009).
[2] R O GREEN, M L EASTWOOD, C M SARTURE et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 65, 227-248(1998).
[3] R W BASEDOW, D C CARMER, M E ANDERSON. HYDICE system: implementation and performance, 2480, 258-267(1995).
[4] B K FORD, M R DESCOUR, R M LYNCH. Large-image-format computed tomography imaging spectrometer for fluorescence microscopy. Optics Express, 9, 444-453(2001).
[5] F A BEST, H E REVERCOMB, D C TOBIN et al. Performance verification of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system, 6405(2006).
[6] M DOUGLASS. DMD reliability: a MEMS success story, 498, 1-11(2003).
[7] [7] 周子逸, 董贤子, 郑美玲. 数字微镜无掩模光刻技术进展及应用[J]. 激光与光电子学进展, 2022, 59(9): 0922030. doi: 10.3788/LOP202259.0922030ZHOUZ Y, DONGX Z, ZHENGM L. Evolution and application of digital micromirror device based maskless photolithography[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922030.(in Chinese). doi: 10.3788/LOP202259.0922030
[8] [8] 陆锦洪, 谢向生, 张培晴, 等. 基于数字微镜器件亚微米制备技术研究[J]. 光子学报, 2010, 39(4):600-604. doi: 10.3788/gzxb20103904.0600LUJ H, XIEX S, ZHANGP Q, et al. Submicron-sized optical fabrication with DMD based lithography[J]. Acta Photonica Sinica, 2010, 39(4):600-604.(in Chinese). doi: 10.3788/gzxb20103904.0600
[9] B MILLS, M FEINAEUGLE, C L SONES et al. Sub-micron-scale femtosecond laser ablation using a digital micromirror device. Journal of Micromechanics and Microengineering, 23(2013).
[10] J Y CHENG, C L GU, D P ZHANG et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Optics Letters, 40, 4875-4878(2015).
[11] Y X REN, R D LU, L GONG. Tailoring light with a digital micromirror device. Annalen Der Physik, 527, 447-470(2015).
[12] S SCHOLES, R KARA, J PINNELL et al. Structured light with digital micromirror devices: a guide to best practice. Optical Engineering, 59(2019).
[13] L ZHU, Z Z CAO, S N FU et al. Double-light-path multiplexing enabled light shaping efficiency enhancement for digital micromirror device, D(2020).
[14] Q GENG, C L GU, J Y CHENG et al. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging. Optica, 4, 674(2017).
[15] M CHLIPALA, T KOZACKI. Color reconstructions of real objects in DMD holographic display with LED illumination, D(2019).
[16] [16] 张一, 余卿, 张昆, 等. 基于数字微镜器件的并行彩色共聚焦测量系统[J]. 光学 精密工程, 2020, 28(4):859-866.ZHANGY, YUQ, ZHANGK, et al. Parallel chromatic confocal measurement system based on digital micromirror device[J]. Opt. Precision Eng., 2020, 28(4):859-866. (in Chinese)
[17] [17] 余卿, 叶瑞芳, 范伟. 基于数字微镜器件实现共焦测量的结构光参数[J]. 光学 精密工程, 2015, 23(5):1272-1278. doi: 10.3788/ope.20152305.1272YUQ, YER F, FANW. Parameters of structured lights of DMD used in confocal measurement[J]. Opt. Precision Eng., 2015, 23(5):1272-1278.(in Chinese). doi: 10.3788/ope.20152305.1272
[18] R ARABLOUEI, E GOAN, S GENSEMER et al. Fast and robust pushbroom hyperspectral imaging via DMD-based scanning, 9948(2016).
[19] [19] 张昊. 基于DMD的编码孔径成像光谱仪关键技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2016. doi: 10.16818/j.issn1001-5868.2016.05.029ZHANGH. Research on Key Technologies of Coded Aperture Imaging Spectrometer Based on DMD[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2016. (in Chinese). doi: 10.16818/j.issn1001-5868.2016.05.029
[21] V BANSAL, P SAGGAU. Digital micromirror devices: principles and applications in imaging. Cold Spring Harbor Protocols, 404-411(2013).
[22] [22] 姚雪峰, 高毅, 龙兵, 等. 数字微镜器件(DMD)杂散光特性测试方法及装置[J]. 中国光学, 2022, 15(2): 339-347. doi: 10.37188/CO.2021-0132YAOX F, GAOY, LONGB, et al. Method and device for testing stray light characteristics of Digital Micro-mirror Device(DMD)[J]. Chinese Optics, 2022, 15(2): 339-347.(in Chinese). doi: 10.37188/CO.2021-0132
[25] E P II WAGNER, B W SMITH, S MADDEN et al. Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulation. Applied Spectroscopy, 49, 1715-1719(1995).
[26] R A DEVERSE, R M HAMMAKER, W G FATELEY. Realization of the hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer. Applied Spectroscopy, 54, 1751-1758(2000).
[27] M H ROBERT, A D RICHARD, J A DANIEL et al. Handbook of vibrational spectroscopy, 1-8(2006).
[28] [28] 郭媛君. 基于DMD的微小型近红外光谱仪光谱信息处理及其应用软件[D]. 重庆: 重庆大学, 2011.GUOY J. Spectral Information Processing of Miniature Near Infrared Spectrometer Based on DMD and its Application Software[D]. Chongqing: Chongqing University, 2011. (in Chinese)
[29] [29] 莫祥霞. 基于DMD的微小型近红外光谱仪系统研究[D]. 重庆: 重庆大学,2011.MOX X. Research on Miniature Near Infrared Spectrometer System Based on DMD[D]. Chongqing: Chongqing University,2011. (in Chinese)
[30] [30] 党博石, 刘华, 王晓朵, 等. 新型阿达玛变换光谱仪[J]. 光子学报, 2013, 42(8):902-907. doi: 10.3788/gzxb20134208.0902DANGB SH, LIUH, WANGX D, et al. A new kind of hadamard transform spectrometer[J]. Acta Photonica Sinica, 2013, 42(8):902-907.(in Chinese). doi: 10.3788/gzxb20134208.0902
[31] [31] 王晓朵. 基于DMD的哈达玛变换近红外光谱仪的研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.WANGX D. Study on Hadamard Transform Near Infrared Spectrometer Based on DMD[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)
[32] [32] 许家林. 基于DMD的阿达玛变换近红外光谱仪关键技术研究[D]. 北京: 中国科学院大学, 2017. doi: 10.1016/j.optcom.2016.07.086XUJ L. Research on Key Technologies of Hadamard Transform Near Infrared Spectrometer Based on DMD[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese). doi: 10.1016/j.optcom.2016.07.086
[33] [33] 王莹, 刘华, 李金环, 等. 基于DMD的近红外光谱仪的研究[J]. 红外与激光工程, 2019, 48(6): 422-430. doi: 10.3788/irla201948.0620002WANGY, LIUH, LIJ H, et al. Research on near-infrared spectrometer based on DMD[J]. Infrared and Laser Engineering, 2019, 48(6): 422-430.(in Chinese). doi: 10.3788/irla201948.0620002
[34] K J KEARNEY, Z NINKOV. Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy, 3292, 81-92(1998).
[35] R A DEVERSE, R M HAMMAKER, W G FATELEY. Hadamard transform Raman imagery with a digital micro-mirror array. Vibrational Spectroscopy, 19, 177-186(1999).
[36] W G FATELEY, R M HAMMAKER, R A DEVERSE. Modulations used to transmit information in spectrometry and imaging. Journal of Molecular Structure, 550/551, 117-122(2000).
[37] K KEARNEY, M A CORIO, Z NINKOV. Imaging spectroscopy with digital micromirrors, 3965, 11-21(2000).
[38] C M WEHLBURG, J C WEHLBURG, S M GENTRY et al. Optimization and characterization of an imaging Hadamard spectrometer, 4381, 506-515(2001).
[39] M W SMITH, J L SMITH, G K TORRINGTON et al. Theoretical description and numerical simulations of a simplified Hadamard transform imaging spectrometer. Seattle, 4816, 372-380(2002).
[40] W FATELEY, R M HAMMAKER, R A DEVERSE et al. The other spectroscopy: demonstration of a new de-dispersion imaging spectrograph. Vibrational Spectroscopy, 29, 163-170(2002).
[41] M P CHRISTENSEN, G W EULISS, M J MCFADDEN et al. ACTIVE-EYES: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging. Applied Optics, 41, 6093(2002).
[42] P VUJKOVIC-CVIJIN, N GOLDSTEIN, M J FOX et al. Adaptive spectral imager for space-based sensing, 6206(2006).
[43] N GOLDSTEIN, P VUJKOVIC-CVIJIN et al. DMD-based adaptive spectral imagers for hyperspectral imagery and direct detection of spectral signatures, 7210(2009).
[44] N GOLDSTEIN, S ADLER-GOLDEN et al. Infrared adaptive spectral imagers for direct detection of spectral signatures and hyperspectral imagery, 8618(2013).
[45] N GOLDSTEIN, BST PETER, J GROT et al. Portable, stand-off spectral imaging camera for detection of effluents and residues. Maryland, 9482(2015).
[46] [46] 孙鑫. 可见光多通道目标探测技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2011.SUNX. Research on Visible Multi-channel Target Detection Technology[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2011. (in Chinese)
[47] X SUN, B L HU, L B LI. An engineering prototype of Hadamard transform spectral imager based on Digital Micro-mirror Device. Optics & Laser Technology, 44, 210-217(2012).
[48] S P LOVE. Programmable matched filter and Hadamard transform hyperspectral imagers based on micromirror arrays, 7210(2009).
[49] S P LOVE, D L GRAFF. Full-frame programmable spectral filters based on micromirror arrays. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(2014).
[50] D L GRAFF, S P LOVE. Adaptive hyperspectral imaging with a MEMS-based full-frame programmable spectral filter. Maryland, 9101(2014).
[51] D L GRAFF, S P LOVE. Toward real-time spectral imaging for chemical detection with a digital micromirror device-based programmable spectral filter. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(2013).
[52] D TAKHAR, J N LASKA, M B WAKIN et al. A new compressive imaging camera architecture using optical-domain compression, 6065, 43-52(2006).
[53] M F DUARTE, M A DAVENPORT, D TAKHAR et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25, 83-91(2008).
[54] W LAM CHAN, K CHARAN, D TAKHAR et al. A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 93, 121105(2008).
[55] Y H WU, I O MIRZA, G R ARCE et al. Demonstration of a DMD-based compressive sensing (CS) spectral imaging system. Maryland. Washington, D.C.: OSA(2011).
[56] Y H WU, I O MIRZA, G R ARCE et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. Optics Letters, 36, 2692-2694(2011).
[57] Y H WU, I O MIRZA, P YE et al. Development of a DMD-based compressive sampling hyperspectral imaging (CS-HSI) system, 7932(2011).
[58] X LIN, G WETZSTEIN, Y B LIU et al. Dual-coded compressive hyperspectral imaging. Optics Letters, 39, 2044-2047(2014).
[59] C XU, T F XU, G YAN et al. Super-resolution compressive spectral imaging via two-tone adaptive coding: publisher's note. Photonics Research, 8, 892(2020).
[60] J J ZHOU, Y YANG, L LI et al. Developing, integrating and validating a compressive hyperspectral video imager, 11423(2020).
[61] [61] 马翠. 基于数字微镜的编码成像光谱仪的研究[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2018.MAC. Research on Coded Imaging Spectrometer Based on Digital Micromirror[D]. Shenzhen: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2018. (in Chinese)
[62] A WUTTIG, R RIESENBERG. Sensitive Hadamard transform imaging spectrometer with a simple MEMS, 4881(2003).
[63] A BEDNARKIEWICZ, M P WHELAN. Microscopic fluorescence lifetime and hyperspectral imaging with digital micromirror illuminator, 6630(2007).
[64] Y J HSU, C C CHEN, C H HUANG et al. Line-scanning hyperspectral imaging based on structured illumination optical sectioning. Biomedical Optics Express, 8, 3005-3016(2017).
[65] X DONG, X C XIAO, Y N PAN et al. DMD-based hyperspectral imaging system with tunable spatial and spectral resolution. Optics Express, 27, 16995-17006(2019).
[66] X DONG, G TONG, X K SONG et al. DMD-based hyperspectral microscopy with flexible multiline parallel scanning. Microsystems & Nanoengineering, 7, 68(2021).
[67] Y QI, L Z HENG, L LI et al. Hadamard transform-based hyperspectral imaging using a single-pixel detector. Optics Express, 28, 16126(2020).
[68] K J BARNARD, G D BOREMAN, D R PAPE. Crosstalk model of a deformable-mirror-based infrared scene projector. Optical Engineering, 33, 140-149(1994).
[69] Y MEURET, P DE VISSCHERE. Contrast-improving methods for digital micromirror device projectors. Optical Engineering, 42, 840-845(2003).
[70] J RENTZ DUPUIS, D J MANSUR. Considerations for DMDs operating in the infrared(2012).
[71] [71] 陈笑, 颜玢玢, 宋菲君, 等. DMD光栅的衍射特性及其在可调谐激光中的应用[J]. 光学学报, 2012, 32(7): 0705003. doi: 10.3788/aos201232.0705003CHENX, YANF F, SONGF J, et al. Diffractive properties of DMD gratings and its new application in tunable fiber lasers[J]. Acta Optica Sinica, 2012, 32(7): 0705003.(in Chinese). doi: 10.3788/aos201232.0705003
[72] Z XIONG, H LIU, Z W LU. Diffraction analysis of digital micromirror device at coherent illumination(2013).
[73] Z XIONG, H LIU, X Q TAN et al. Diffraction analysis of digital micromirror device in maskless photolithography system. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(2014).
[74] Q HAN, J Z ZHANG, J WANG et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared. Applied Optics, 55, 8016-8021(2016).
[75] X DONG, Y C SHI, X C XIAO et al. Non-paraxial diffraction analysis for developing DMD-based optical systems. Optics Letters, 47, 4758-4761(2022).
[76] J D LIU, C ZAOUTER, X L LIU et al. Coded-aperture broadband light field imaging using digital micromirror devices, 6, 2021(2021).
[77] [77] 张卫平, 何小荣. 光栅的汇合光谱特性与双光栅成象效应[J]. 中国科学G辑, 2006, 36(5):556-560.ZHANGW P, HEX R. Confluence spectral characteristics of gratings and imaging effect of double gratings[J]. Science in China (Series G), 2006, 36(5):556-560.(in Chinese)
[78] [78] 武鑫. 基于DMD的自适应分类光谱成像技术光学系统设计研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.WUX. Research on Optical System Design of Adaptive Classified Spectral Imaging Technology Based on DMD[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2020. (in Chinese)
[79] [79] 王月旗. 基于DMD的编码孔径光谱成像光学系统设计[D]. 长春: 长春理工大学, 2020.WANGY Q. Design of Coded Aperture Spectral Imaging Optical System Based on DMD[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)
[80] [80] 赵雨时, 贺文俊, 刘智颖, 等. 光谱维编码中红外光谱成像系统的光学设计[J]. 红外与激光工程, 2021, 50(12): 3788/IRLA20210700.ZHAOY SH, HEW J, LIUZH Y, et al. Optical design of infrared spectral imaging system in spectral dimension coding[J]. Infrared and Laser Engineering, 2021, 50(12): 3788/IRLA20210700.(in Chinese)
[81] [81] 杨莹, 胡炳樑, 李立波, 等. Hadamard编码红外光谱成像系统设计[J]. 光学 精密工程, 2022, 30(6): 641-650. doi: 10.37188/OPE.20223006.0641YANGY, HUB L, LIL B, et al. Design of MWIR hadamard coded imaging spectrometer[J]. Opt. Precision Eng., 2022, 30(6): 641-650.(in Chinese). doi: 10.37188/OPE.20223006.0641
Get Citation
Copy Citation Text
Yingchao SHI, Luming ZHANG, Fei CHEN, Weizheng YUAN, Yiting YU. Progress in spectral imaging technology of digital micromirror devices[J]. Optics and Precision Engineering, 2023, 31(21): 3096
Category:
Received: May. 10, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: YU Yiting (yyt@nwpu.edu.cn)