Spectroscopy and Spectral Analysis, Volume. 40, Issue 2, 643(2020)
Spectral Signal Denoising Algorithm Based on Improved LMS
[1] [1] Li J, Li R, Zhao B, et al. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2018, 195: 191.
[2] [2] Wang K, Sun D W, Wei Q, et al. LWT, 2018, 96: 66.
[4] [4] Davenport J J, Jane H, Saffell J R, et al. Applied Optics, 2015, 54(27): 8135.
[5] [5] Ruffin C, King R L, Younan N H. GIScience & Remote Sensing, 2013, 45(1): 1.
[8] [8] Narimani G, Martin P A, Taylor D P. IEEE Transactions on Communications, 2018, 66(4): 1675.
[9] [9] Padhi T, Chandra M, Kar A, et al. Applied Acoustics, 2019, 146: 355.
[10] [10] Lopes Pa C, Gerald Ja B, Piedade Mo S. Digital Signal Processing, 2017, 60: 75.
[11] [11] Huang C, Xia G, Jin S, et al. Optik-International Journal for Light and Electron Optics, 2018, 157: 693.
[12] [12] Qian Q, Jin R, Yi J, et al. Machine Learning, 2013, 99(3): 353.
[13] [13] Elloumi S, Lambert A. Optimization Methods and Software, 2019, 34(1): 98.
[14] [14] Kingma D P, Ba J L. ADMA: A Method for Stochastic Optimization. 2014, arXiv: 14126980[cs.LG].
Get Citation
Copy Citation Text
ZHENG Guo-liang, ZHU Hong-qiu, LI Yong-gang. Spectral Signal Denoising Algorithm Based on Improved LMS[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 643
Received: Feb. 28, 2019
Accepted: --
Published Online: May. 12, 2020
The Author Email: Guo-liang ZHENG (zgl_csu@163.com)