Laser Journal, Volume. 45, Issue 12, 1(2024)
The review of snapshot hyperspectral imaging technology based on coded compression
[1] [1] Proakis J G. Digital signal processing: principles, algorithms, and applications[M]. Pearson Education India, 2007.
[2] [2] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[3] [3] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
[4] [4] Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.
[5] [5] Wagadarikar A, John R, Willett R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51.
[6] [6] Xie H, Zhao Z, Han J, et al. Dual camera snapshot highresolution-hyperspectral imaging system with parallel joint optimization via physics-informed learning[J]. Optics Express, 2023, 31(9): 14617-14639.
[7] [7] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 2019, 13(1): 13-20.
[8] [8] Bioucas-dias J M, Figueiredo M A T. A new TwIST: Twostep iterative shrinkage/ thresholding algorithms for image restoration[J]. IEEE Transactions on Image processing, 2007, 16(12): 2992-3004.
[9] [9] Yang J, Liao X, Yuan X, et al. Compressive sensing by learning a Gaussian mixture model from measurements[J]. IEEE Transactions on Image Processing, 2014, 24(1): 106-119.
[10] [10] Yuan X, Brady D J, Katsaggelos A K. Snapshot compressive imaging: Theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38(2): 65-88.
[11] [11] Liu Y, Yuan X, Suo J, et al. Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(12): 2990-3006.
[12] [12] Yuan X. Generalized alternating projection based total variation minimization for compressive sensing[C]//2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 2539-2543.
[13] [13] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine learning, 2011, 3(1): 1-122.
[14] [14] Toi I, Frossard P. Dictionary learning[J]. IEEE Signal Processing Magazine, 2011, 28(2): 27-38.
[15] [15] Wang L, Wu Z, Zhong Y, et al. Snapshot spectral compressive imaging reconstruction using convolution and contextual Transformer[J]. Photonics Research, 2022, 10(8): 1848.
[16] [16] Fan A, Xu T, Teng G, et al. Deep learning reconstruction enables full-Stokes single compression in polarized hyperspectral imaging[J]. Chinese Optics Letters, 2023, 21(5): 051101.
[17] [17] Miao X, Yuan X, Pu Y, et al. -net: Reconstruct hyperspectral images from a snapshot measurement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 4059-4069.
[18] [18] Zhang T, Fu Y, Wang L, et al. Hyperspectral image reconstruction using deep external and internal learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8559-8568.
[19] [19] Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9-10): 589-592.
[20] [20] Arce G R, Rueda H, Correa C V, et al. Snapshot compressive multispectral cameras[J]. Wiley Encyclopedia of Electrical and Electronics Engineering, 1999: 1-22.
[21] [21] Wang L, Zhang T, Fu Y, et al. Hyperreconnet: Joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2257-2270.
[22] [22] Courbariaux M, Bengio Y, David J P. Binaryconnect: Training deep neural networks with binary weights during propagations[J]. Advances in Neural Information Processing Systems, 2015, 28: 2187-2195.
[23] [23] Zheng S, Liu Y, Meng Z, et al. Deep plug-and-play priors for spectral snapshot compressive imaging[J]. Photonics Research, 2021, 9(2): B18-B29.
[24] [24] Meng Z, Jalali S, Yuan X. Gap-net for snapshot compressive imaging[J]. arXiv preprint arXiv: 2012, 08364, 2020.
[25] [25] Meng Z, Yu Z, Xu K, et al. Self-supervised neural networks for spectral snapshot compressive imaging[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 2622-2631.
[26] [26] Xie H, Zhao Z, Han J, et al. Dual camera snapshothyperspectral imaging system via physics-informed learning[J]. Optics and Lasers in Engineering, 2022, 154: 107023.
[27] [27] Xie H, Zhao Z, Han J, et al. Dual camera snapshot highresolution-hyperspectral imaging system with parallel joint optimization via physics-informed learning[J]. Optics Express, 2023, 31(9): 14617-14639.
[28] [28] He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 16000-16009.
[29] [29] Zhao M, Chen X, Yuan X, et al. Untrained Neural Nets for Snapshot Compressive Imaging: Theory and Algorithms[J]. arXiv preprint arXiv: 2406, 03694, 2024.
[30] [30] Song H, Ma Y, Han Y, et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Advanced Theory and Simulations, 2021, 4(3): 2000299.
[31] [31] Zhang W, Song H, He X, et al. Deeply learned broadband encoding stochastic hyperspectral imaging[J]. Light: Science & Applications, 2021, 10(1): 108.
[32] [32] Yang J, Cui K, Cai X, et al. Ultraspectral imaging based on metasurfaces with freeform shaped meta-atoms[J]. Laser & Photonics Reviews, 2022, 16(7): 2100663.
[33] [33] Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2011: 193-200.
[34] [34] Sun Y, Zhang J, Liang R. pHSCNN: CNN-based hyperspectral recovery from a pair of RGB images[J]. Optics Express, 2022, 30(14): 24862-24873.
[35] [35] Jia Y, Zheng Y, Gu L, et al. From RGB to spectrum for natural scenes via manifold-based mapping[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2017: 4705-4713.
[36] [36] Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
[37] [37] Arad B, Ben-shahar O. Sparse recovery of hyperspectral signal from natural RGB images[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2016: 19-34.
[38] [38] Sun Y, Fracchia F D, Calvert T W, et al. Deriving spectra from colors and rendering light interference[J]. IEEE Computer Graphics and Applications, 1999, 19(4): 61-67.
[39] [39] Nguyen R M H, Prasad D K, Brown M S. Training-based spectral reconstruction from a single RGB image[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2014: 186-201.
[40] [40] Li J, Wu C, Song R, et al. Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 462-463.
[41] [41] He T, Zhang Q, Zhou M, et al. Single-shot hyperspectral imaging based on dual attention neural network with multimodal learning[J]. Optics Express, 2022, 30(6): 9790-9813.
[42] [42] He T, Zhang Q, Zhou M, et al. Deeply learned filter response functions for hyperspectral reconstruction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4767-4776.
[43] [43] Antipa N, Kuo G, Heckel R, et al. DiffuserCam: lensless single-exposure 3D imaging[J]. Optica, 2018, 5(1): 1-9.
[44] [44] Kar O F, Oktem F S. Compressive spectral imaging with diffractive lenses[J]. Optics Letters, 2019, 44(18): 4582-4585.
[45] [45] Li L, Wang L, Song W, et al. Quantization-aware deep optics for diffractive snapshot hyperspectral imaging[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 19780-19789.
[46] [46] Peng Y, Fu Q, Amata H, et al. Computational imaging using lightweight diffractive-refractive optics[J]. Optics Express, 2015, 23(24): 31393-31407.
[47] [47] Heide F, Fu Q, Peng Y, et al. Encoded diffractive optics for full-spectrum computational imaging[J]. Scientific Reports, 2016, 6(1): 33543.
[48] [48] Huang L, Luo R, Liu X, et al. Spectral imaging with deep learning[J]. Light: Science & Applications, 2022, 11(1): 61.
[49] [49] Hauser J, Zeligman A, Averbuch A, et al. DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot[J]. Applied Optics, 2020, 59(36): 11196-11208.
[50] [50] Peng Y, Fu Q, Heide F, et al. The diffractive achromat full spectrum computational imaging with diffractive optics[C]//SIGGRAPH ASIA 2016 Virtual Reality meets Physical Reality: Modelling and Simulating Virtual Humans and Environments, 2016: 1-2.
[51] [51] Jeon D S, Baek S H, Yi S, et al. Compact snapshot hyperspectral imaging with diffracted rotation[J]. ACM Transactions on Graphics, 2015, 38(4), 1-13.
[52] [52] Golub M A, Averbuch A, Nathan M, et al. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser[J]. Applied Optics, 2016, 55(3): 432-443.
[53] [53] Baek S H, Ikoma H, Jeon D S, et al. Single-shot hyperspectral-depth imaging with learned diffractive optics[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2651-2660.
Get Citation
Copy Citation Text
XIE Hui, DUAN Meng, WU Wei, ZHANG Yunqiang, PAN Guoqing, WANG Weiqiang, MU Shibo. The review of snapshot hyperspectral imaging technology based on coded compression[J]. Laser Journal, 2024, 45(12): 1
Category:
Received: May. 7, 2024
Accepted: Mar. 10, 2025
Published Online: Mar. 10, 2025
The Author Email: