Chinese Optics Letters, Volume. 19, Issue 12, 123601(2021)

Multifrequency superscattering pattern shaping

Yao Qin1, Jinying Xu2, Yineng Liu1、*, and Huanyang Chen1
Author Affiliations
  • 1Institute of Electromagnetics and Acoustics and School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
  • 2Department of Physics, Fuzhou University, Fuzhou 350108, China
  • show less
    References(41)

    [1] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon., 3, 654(2009).

    [2] S. Arslanagic, R. W. Ziolkowski. Highly subwavelength, superdirective cylindrical nanoantenna. Phys. Rev. Lett., 120, 237401(2018).

    [3] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett., 5, 709(2005).

    [4] J. Sheng, J. Xie, J. Liu. Multiple super-resolution imaging in the second band of gradient lattice spacing photonic crystal flat lens. Chin. Opt. Lett., 18, 120501(2020).

    [5] J. Zhao, X. Y. Zhang, C. R. Yonzon, A. J. Haes, R. P. Van Duyne. Localized surface plasmon resonance biosensors. Nanomedicine, 1, 219(2006).

    [6] J. Wang, X. Wang, M. Zeng. Broadband transverse displacement sensing of silicon hollow nanodisk under focused radial polarization illumination in the near-infrared region. Chin. Opt. Lett., 18, 063602(2020).

    [7] A. Schliesser, N. Picqúe, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photon., 6, 440(2012).

    [8] M. A. Green, S. Pillai. Harnessing plasmonics for solar cells. Nat. Photon., 6, 130(2012).

    [9] W. Xu, L. Xie, Y. Ying. Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale, 9, 13864(2017).

    [10] L. Novotny, B. Hecht. Principles of Nano-optics(2012).

    [11] Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355, 1062(2017).

    [12] T. Yang, H. Chen, X. Luo, H. Ma. Superscatterer: enhancement of scattering with complementary media. Opt. Express, 16, 18545(2008).

    [13] W. H. Wee, J. B. Pendry. Shrinking optical devices. New J. Phys., 11, 073033(2009).

    [14] Z. Ruan, S. Fan. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett., 105, 013901(2010).

    [15] R. J. Li, X. Lin, S. S. Lin, X. Liu, H. S. Chen. Tunable deep-subwavelength superscattering using graphene monolayers. Opt. Lett., 40, 1651(2015).

    [16] R. J. Li, X. Lin, S. S. Lin, X. Liu, H. S. Chen. Atomically thin spherical shell-shaped superscatterers based on Bohr model. Nanotechnology, 26, 505201(2015).

    [17] R. Li, B. Zheng, X. Lin, R. Hao, S. Lin, W. Yin, E. Li, H. Chen. Design of ultracompact graphene-based superscatterers. IEEE J. Sel. Top. Quantum Electron., 23, 4600208(2017).

    [18] W. Liu. Ultra-directional super-scattering of homogenous spherical particles with radial anisotropy. Opt. Express, 23, 14734(2015).

    [19] W. Liu, B. Lei, J. Shi, H. Hu. Unidirectional superscattering by multilayered cavities of effective radial anisotropy. Sci. Rep., 6, 34775(2016).

    [20] W. Liu. Superscattering pattern shaping for radially anisotropic nanowires. Phys. Rev. A, 96, 023854(2017).

    [21] W. Wan, W. Zheng, Y. Chen, Z. Liu. From Fano-like interference to superscattering with a single metallic nanodisk. Nanoscale, 6, 9093(2014).

    [22] Y. Huang, L. Gao. Superscattering of light from core-shell nonlocal plasmonic nanoparticles. J. Phys. Chem. C, 118, 30170(2014).

    [23] A. Mirzaei, A. Miroshnichenko, I. Shadrivov, Y. Kivshar. Superscattering of light optimized by a genetic algorithm. Appl. Phys. Lett., 105, 011109(2014).

    [24] C. Wang, C. Qian, H. Hu, L. Shen, Z. Wang, H. Wang, Z. Xu, B. Zhang, H. Chen, X. Lin. Superscattering of light in refractive-index near-zero environments. Prog. Electromagn. Res., 168, 15(2020).

    [25] M. Zhou, L. Shi, J. Zi, Z. Yu. Extraordinarily large optical cross section for localized single nanoresonator. Phys. Rev. Lett., 115, 023903(2015).

    [26] P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, T. J. Kippenberg. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 107, 063901(2011).

    [27] F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, S. A. Diddams. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express, 23, 26814(2015).

    [28] C. Qian, X. Lin, Y. Yang, F. Gao, Y. Shen, J. Lopez, I. Kaminer, B. Zhang, E. Li, M. Soljačić, H. Chen. Multifrequency superscattering from subwavelength hyperbolic structures. ACS Photon., 5, 1506(2018).

    [29] H. W. Wu, Y. Fang, J. Q. Quan, Y. Z. Han, Y. Q. Yin, Y. Li, Z. Q. Sheng. Multifrequency superscattering with high Q factors from a deep-subwavelength spoof plasmonic structure. Phys. Rev. B, 100, 235443(2019).

    [30] C. Qian, X. Lin, Y. Yang, X. Xiong, H. Wang, E. Li, I. Kaminer, B. Zhang, H. Chen. Experimental observation of superscattering. Phys. Rev. Lett., 122, 063901(2019).

    [31] V. I. Shcherbinin, V. I. Fesenko, T. I. Tkachova, V. R. Tuz. Superscattering from subwavelength corrugated cylinders. Phys. Rev. Appl., 13, 024081(2020).

    [32] S. H. Raad, C. J. Zapata-Rodríguez, Z. Atlasbaf. Multi-frequency super-scattering from sub-wavelength graphene-coated nanotubes. J. Opt. Soc. Am. B, 36, 2292(2019).

    [33] R. Kumar, K. Kajilawa. Superscattering from cylindrical hyperbolic metamaterials in the visible region. Opt. Express, 28, 1507(2020).

    [34] R. Kumar, K. Kajikawa. Comparison of cylinder- and planar-effective medium approximations on calculation of scattering properties of cylindrical hyperbolic metamaterials. J. Opt. Soc. Am. B, 36, 559(2019).

    [35] J. Chai, P. Hu, L. Ge, H. Xiang, D. Han. Tunable terahertz cloaking and lasing by the optically pumped graphene wrapped on a dielectric cylinder. J. Phys. Commun., 3, 035016(2019).

    [36] W. Liu, A. E. Miroshnichenko, Y. S. Kivshar. Q- factor enhancement in all-dielectric anisotropic nanoresonators. Phys. Rev. B, 94, 195436(2016).

    [37] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836(2019).

    [38] T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi. Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter., 25, 215301(2013).

    [39] W. Liu, Y. S. Kivshar. Generalized Kerker effects in nanophotonics and meta-optics. Opt. Express, 26, 13085(2018).

    [40] W. Liu. Generalized magnetic mirrors. Phys. Rev. Lett., 119, 123902(2017).

    [41] H. C. van de Hulst. Light Scattering by Small Particles(1981).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Yao Qin, Jinying Xu, Yineng Liu, Huanyang Chen, "Multifrequency superscattering pattern shaping," Chin.Opt.Lett. 19, 123601 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nanophotonics, Metamaterials, and Plasmonics

    Received: Mar. 17, 2021

    Accepted: May. 14, 2021

    Posted: May. 14, 2021

    Published Online: Sep. 2, 2021

    The Author Email: Yineng Liu (lyn610@xmu.edu.cn)

    DOI:10.3788/COL202119.123601

    Topics