Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 2959(2022)

Interaction Between Chemical Admixtures and Calcium Silicate Hydrate and Chemical Admixtures Impacts on Calcium Silicate Hydrate Properties by Molecular: A Short Review Dynamics Studies

HOU Xiaowei*... YIN Jianhao and KONG Xiangming |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(65)

    [3] [3] ZHANG C Y, KONG X M, YIN J H, et al. Rheology of fresh cement pastes containing polymer nanoparticles[J]. Cem Concr Res, 2021, 144: 106419.

    [6] [6] GONG K, PAN Z, KORAYEM A H, et al. Reinforcing effects of graphene oxide on portland cement paste[J]. J Mater Civ Eng, 2015, 27(2): A4014010.

    [7] [7] NGUYEN H, RAHIMI-AGHDAM S, BAZANT Z P. Unsaturated nanoporomechanics[J]. P Natl Acad Sci USA, 2020, 117(7): 3440-3445.

    [8] [8] IOANNIDOU K, KANDUC M, LI L, et al. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[J]. Nat Commun, 2016, 7: 12106.

    [9] [9] BASQUIROTO DE SOUZA F, SAGOE‐CRENTSIL K, DUAN W H. A century of research on calcium silicate hydrate (C-S-H): Leaping from structural characterization to nanoengineering[J]. J Am Ceram Soc, 2022, 105(5): 3081-3099.

    [10] [10] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. Arealisticmolecularmodelofcement hydrates[J]. P Natl Acad Sci USA, 2009, 106(38): 16102-16107.

    [11] [11] HOU D S, ZHANG J R, LI Z J, et al. Uniaxial tension study of calcium silicate hydrate (C-S-H): Structure, dynamics and mechanical properties[J]. Mater Struct, 2014, 48(11): 3811-3824.

    [12] [12] HOU D S, ZHU Y, LU Y Y, et al. Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: A molecular dynamics study[J]. Mater Chem Phys, 2014, 146(3): 503-511.

    [13] [13] RIVAS MURILLO J S, MOHAMED A, HODO W, et al. Computational modeling of shear deformation and failure of nanoscale hydrated calcium silicate hydrate in cement paste: Calcium silicate hydrate jennite[J]. Int J Damage Mech, 2015, 25(1): 98-114.

    [15] [15] BU Y H, DU W X, DU J P, et al. The potential utilization of lecithin as natural gas hydrate decomposition inhibitor in oil well cement at low temperatures[J]. Constr Build Mater, 2021, 269: 121274.

    [16] [16] SUN D W, ZHENG Y, YAN J H, et al. Uniaxial tensile deformation and fracture process of structures forming by unsaturated intercalation of amine molecule into C-S-H gel[J]. J Mol Model, 2022, 28(1): 29.

    [17] [17] SONG Z J, CAI H C, LIU Q Y, et al. Numerical simulation of adsorption of organic inhibitors on C-S-H gel[J]. Crystals, 2020, 10(9): 742.

    [18] [18] ANDRONIUK I, LANDESMAN C, HENOCQ P, et al. Adsorption of gluconate and uranyl on C-S-H phases: Combination of wet chemistry experiments and molecular dynamics simulations for the binary systems[J]. Phys Chem Earth, 2017, 99: 194-203.

    [19] [19] HOU D S, GAO L J, CHEN D D, et al. Molecular-scale insights on structure-efficiency relationship of silane-based waterproofing agents[J]. Constr Build Mater, 2022, 327: 126985.

    [20] [20] CHEN J Z, ZHANG Y, HOU D S, et al. Experiment and molecular dynamics study on the mechanism for hydrophobic impregnation in cement-based materials: A case of octadecane carboxylic acid[J]. Constr Build Mater, 2019, 229: 116871.

    [21] [21] SUN D W, YAN J H, MA X Y, et al. On the characterization of amine molecules behaviors in the nanochannels forming in calcium silicate hydrate gel[J]. Appl Surf Sci, 2021, 560: 149994.

    [22] [22] ZHOU Y, HOU D S, JIANG J Y, et al. Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: A case study of tobermorite[J]. Phys Chem Chem Phys, 2017, 19(23): 15145-15159.

    [23] [23] YU J, ZHENG H P, HOU D S, et al. Silane coupling agent modification treatment to improve the properties of rubber-cement composites[J]. ACS Sustain Chem Eng, 2021, 9(38): 12899-12911.

    [24] [24] ZHOU A, YU Z C, WEI H N, et al. Understanding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites[J]. ACS Appl Mater Inter, 2020, 12(39): 44163-44171.

    [25] [25] DU J P, BU Y H, SHEN Z H. Interfacial properties and nanostructural characteristics of epoxy resin in cement matrix[J]. Constr Build Mater, 2018, 164: 103-112.

    [26] [26] WANG X F, XIE W, REN J, et al. Interfacial binding energy between calcium-silicate-hydrates and epoxy resin: A molecular dynamics study[J]. Polymers (Basel), 2021, 13(11): 1683.

    [27] [27] DAI J G, YOKOTA H, IWANAMI M, et al. Experimental investigation of the influence of moisture on the bond behavior of frp to concrete interfaces[J]. J Compos Constr, 2010, 14(6): 834-844.

    [28] [28] KARBHARI V M, CHIN J W, HUNSTON D, et al. Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure[J]. J Compos Constr, 2003, 7(3): 238-247.

    [29] [29] SEN R. Developments in the durability of FRP-concrete bond[J]. Constr Build Mater, 2015, 78: 112-125.

    [31] [31] YU Z C, ZHOU A, NING W Y, et al. Molecular insights into the weakening effect of water on cement/epoxy interface[J]. Appl Surf Sci, 2021, 553: 149493.

    [32] [32] WANG P, YANG Q G, WANG M H, et al. Theoretical investigation of epoxy detachment from C-S-H interface under aggressive environment[J]. Constr Build Mater, 2020, 264: 120232.

    [33] [33] JIANG F X, YANG Q R, WANG Y T, et al. Insights on the adhesive properties and debonding mechanism of CFRP/concrete interface under sulfate environment: From experiments to molecular dynamics[J]. Constr Build Mater, 2021, 269: 121247.

    [34] [34] NAGESH A K, KAMALA ILANGO N, ALEX A, et al. Effect of pore solution calcium and substrate calcium on PMMA/cement paste interface during early stages of hydration[J]. J Am Ceram Soc, 2020, 103(8): 4664-4677.

    [35] [35] ASKARINEJAD S, RAHBAR N. Effects of cement-polymer interface properties on mechanical response of fiber-reinforced cement composites[J]. J Nanomech Micromech, 2017, 7(2): UNSP 04017002.

    [36] [36] SHALCHY F, RAHBAR N. Nanostructural characteristics and interfacial properties of polymer fibers in cement matrix[J]. ACS Appl Mater Inter, 2015, 7(31): 17278-17286.

    [37] [37] WANG X F, XIE W, LI T R, et al. Molecular dynamics study on mechanical properties of interface between urea-formaldehyde resin and calcium-silicate-hydrates[J]. Materials (Basel), 2020, 13(18): 4054.

    [38] [38] WANG P, QIAO G, ZHANG Y, et al. Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers[J]. Constr Build Mater, 2020, 257: 119557.

    [39] [39] LIU K Q, CHENG X O, MA Y, et al. Analysis of interfacial nanostructure and interaction mechanisms between cellulose fibres and calcium silicate hydrates using experimental and molecular dynamics simulation data[J]. Appl Surf Sci, 2020, 506: 144914.

    [40] [40] CHI Y, HUANG B, SAAFI M, et al. Carrot-based covalently bonded saccharides as a new 2D material for healing defective calcium-silicate-hydrate in cement: Integrating atomistic computational simulation with experimental studies[J]. Compos Part B-Eng, 2020, 199: 108235.

    [41] [41] HU B, HUANG W K, YU J L, et al. Study on the adhesion performance of asphalt-calcium silicate hydrate gel interface in semi-flexible pavement materials based on molecular dynamics[J]. Materials (Basel), 2021, 14(16): 4406.

    [43] [43] JAMIL T, JAVADI A, HEINZ H. Mechanism of molecular interaction of acrylate-polyethylene glycol acrylate copolymers with calcium silicate hydrate surfaces[J]. Green Chem, 2020, 22(5): 1577-1593.

    [44] [44] JAVADI A, JAMIL T, ABOUZARI-LOTF E, et al. Working mechanisms and design principles of comb-like polycarboxylate ether superplasticizers in cement hydration: Quantitative insights for a series of well-defined copolymers[J]. ACS Sustain Chem Eng, 2021, 9(25): 8354-8371.

    [45] [45] ZHOU Y, HOU D S, JIANG J Y, et al. Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites[J]. Chem Phys Lett, 2017, 687: 184-187.

    [46] [46] ZHOU Y, OROZCO C A, DUQUE-REDONDO E, et al. Modification of poly(ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates[J]. Cem Concr Res, 2019, 115: 20-30.

    [47] [47] ZHOU Y, TANG L P, LIU J P, et al. Interaction mechanisms between organic and inorganic phases in calcium silicate hydrates/poly(vinyl alcohol) composites[J]. Cem Concr Res, 2019, 125: 105891.

    [48] [48] YU J, WANG N, WANG M H, et al. Recyclable rubber-cement composites produced by interfacial strengthened strategy from polyvinyl alcohol[J]. Constr Build Mater, 2020, 264: 120541.

    [49] [49] HAN Q H, YANG Y Z, ZHANG J R, et al. Insights into the interfacial strengthening mechanism of waste rubber/cement paste using polyvinyl alcohol: Experimental and molecular dynamics study[J]. Cem Concr Compos, 2020, 114: 103791.

    [50] [50] YU J, GAO S, HOU D S, et al. Water transport mechanisms of poly(acrylic acid), poly(vinyl alcohol), and poly(ethylene glycol) in C-S-H nanochannels: A molecular dynamics study[J]. J Phys Chem B, 2020, 124(28): 6095-6104.

    [51] [51] ZHOU Y, HOU D S, MANZANO H, et al. Interfacial connection mechanisms in calcium-silicate-hydrates/polymer nanocomposites: A molecular dynamics study[J]. ACS Appl Mater Inter, 2017, 9(46): 41014-41025.

    [52] [52] LUO Q, HUANG J L. Mechanisms and critical technologies of transport inhibitor agent (TIA) throughout C-S-H nano-channels[J]. Materials (Basel), 2022, 15(2): 515.

    [53] [53] SANCHEZ F, ZHANG L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics[J]. J Colloid Interface Sci, 2008, 323(2): 349-358.

    [55] [55] GUO X X, XIN H, LI J, et al. Molecular dynamics study on perfect and defective graphene/calcium-silicate-hydrate composites under tensile loading[J]. Mol Simulat, 2019, 45(18): 1481-1487.

    [56] [56] FAN D, YANG S T, SAAFI M. Molecular dynamics simulation of mechanical properties of intercalated GO/ C-S-H nanocomposites[J]. Comp Mater Sci, 2021, 186: 110012.

    [57] [57] KAI M F, ZHANG L W, LIEW K M. Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding[J]. Carbon, 2019, 146: 181-193.

    [58] [58] HOU D S, LU Z Y, LI X Y, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms[J]. Carbon, 2017, 115: 188-208.

    [59] [59] WAN H Y, ZHANG Y. Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete[J]. Mater Struct, 2020, 53(2): 34.

    [60] [60] HOU D S, YANG T J, TANG J H, et al. Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: Functional group de-protonation, interfacial bonding and strengthening mechanism[J]. Phys Chem Chem Phys, 2018, 20(13): 8773-8789.

    [61] [61] YANG Y, CAO J. Interfacial heat transfer behavior of graphene-based filler and calcium-silicate-hydrate in cement composites[J]. Int J Heat Mass Transfer, 2021, 176: 121165.

    [62] [62] ZHENG Q, JIANG J, CHEN C, et al. Nanoengineering microstructure of hybrid C-S-H/silicene gel[J]. ACS Appl Mater Inter, 2020, 12(15): 17806-17814.

    [63] [63] HOU D S, ZHANG W, CHEN Z, et al. A molecular dynamics study of silicene reinforced cement composite at different humidity: Surface structure, bonding, and mechanical properties[J]. Constr Build Mater, 2021, 291: 123242.

    [65] [65] EFTEKHARI M, MOHAMMADI S. Molecular dynamics simulation of the nonlinear behavior of the cnt-reinforced calcium silicate hydrate (C-S-H) composite[J]. Compos Part A-Appl S, 2016, 82: 78-87.

    [66] [66] MERODIO-PEREA R G, PáEZ-PAVóN A, LADO-TOURIO I. Reinforcing cement with pristine and functionalized carbon nanotubes: Experimental and simulation studies[J]. Int J Smart Nano Mat, 2020, 11(4): 370-386.

    [67] [67] LUSHNIKOVA A, ZAOUI A. Improving mechanical properties of C-S-H from inserted carbon nanotubes[J]. J Phys Chem Solids, 2017, 105: 72-80.

    [68] [68] LUSHNIKOVA A, ZAOUI A. Influence of single-walled carbon nantotubes structure and density on the ductility of cement paste[J]. Constr Build Mater, 2018, 172: 86-97.

    [69] [69] LAANAIYA M, ZAOUI A. Preventing cement-based materials failure by embedding Fe2O3 nanoparticles[J]. Constr Build Mater, 2020, 260: 120466.

    [70] [70] DU T, LI H, BAUCHY M. Molecular dynamics simulation of the precipitation of calcium silicate hydrate nanostructures under two-dimensional confinement by TiO2: Implications for advanced concretes[J]. ACS Appl Nano Mater, 2020, 3(3): 2176-2184.

    [71] [71] YAO X P, LIU Y M, WANG W, et al. Role of nanofillers for high mechanical performance cementitious composites[J]. Constr Build Mater, 2022, 322: 126489.

    [72] [72] SEKKAL W, ZAOUI A. Novel properties of nano-engineered cementitious materials with fullerene buckyballs[J]. Cem Concr Compos, 2021, 118: 103960.

    [73] [73] SINDU B S, SASMAL S. Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite[J]. Constr Build Mater, 2020, 253: 119190.

    [74] [74] LU Z Y, YU J, YAO J, et al. Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J]. Cem Concr Compos, 2020, 112: 103676.

    Tools

    Get Citation

    Copy Citation Text

    HOU Xiaowei, YIN Jianhao, KONG Xiangming. Interaction Between Chemical Admixtures and Calcium Silicate Hydrate and Chemical Admixtures Impacts on Calcium Silicate Hydrate Properties by Molecular: A Short Review Dynamics Studies[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2959

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 27, 2022

    Accepted: --

    Published Online: Jan. 27, 2023

    The Author Email: Xiaowei HOU (879077237@qq.com)

    DOI:10.14062/j.issn.0454-5648.20220335

    Topics