Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 2959(2022)
Interaction Between Chemical Admixtures and Calcium Silicate Hydrate and Chemical Admixtures Impacts on Calcium Silicate Hydrate Properties by Molecular: A Short Review Dynamics Studies
[3] [3] ZHANG C Y, KONG X M, YIN J H, et al. Rheology of fresh cement pastes containing polymer nanoparticles[J]. Cem Concr Res, 2021, 144: 106419.
[6] [6] GONG K, PAN Z, KORAYEM A H, et al. Reinforcing effects of graphene oxide on portland cement paste[J]. J Mater Civ Eng, 2015, 27(2): A4014010.
[7] [7] NGUYEN H, RAHIMI-AGHDAM S, BAZANT Z P. Unsaturated nanoporomechanics[J]. P Natl Acad Sci USA, 2020, 117(7): 3440-3445.
[8] [8] IOANNIDOU K, KANDUC M, LI L, et al. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates[J]. Nat Commun, 2016, 7: 12106.
[9] [9] BASQUIROTO DE SOUZA F, SAGOE‐CRENTSIL K, DUAN W H. A century of research on calcium silicate hydrate (C-S-H): Leaping from structural characterization to nanoengineering[J]. J Am Ceram Soc, 2022, 105(5): 3081-3099.
[10] [10] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. Arealisticmolecularmodelofcement hydrates[J]. P Natl Acad Sci USA, 2009, 106(38): 16102-16107.
[11] [11] HOU D S, ZHANG J R, LI Z J, et al. Uniaxial tension study of calcium silicate hydrate (C-S-H): Structure, dynamics and mechanical properties[J]. Mater Struct, 2014, 48(11): 3811-3824.
[12] [12] HOU D S, ZHU Y, LU Y Y, et al. Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: A molecular dynamics study[J]. Mater Chem Phys, 2014, 146(3): 503-511.
[13] [13] RIVAS MURILLO J S, MOHAMED A, HODO W, et al. Computational modeling of shear deformation and failure of nanoscale hydrated calcium silicate hydrate in cement paste: Calcium silicate hydrate jennite[J]. Int J Damage Mech, 2015, 25(1): 98-114.
[15] [15] BU Y H, DU W X, DU J P, et al. The potential utilization of lecithin as natural gas hydrate decomposition inhibitor in oil well cement at low temperatures[J]. Constr Build Mater, 2021, 269: 121274.
[16] [16] SUN D W, ZHENG Y, YAN J H, et al. Uniaxial tensile deformation and fracture process of structures forming by unsaturated intercalation of amine molecule into C-S-H gel[J]. J Mol Model, 2022, 28(1): 29.
[17] [17] SONG Z J, CAI H C, LIU Q Y, et al. Numerical simulation of adsorption of organic inhibitors on C-S-H gel[J]. Crystals, 2020, 10(9): 742.
[18] [18] ANDRONIUK I, LANDESMAN C, HENOCQ P, et al. Adsorption of gluconate and uranyl on C-S-H phases: Combination of wet chemistry experiments and molecular dynamics simulations for the binary systems[J]. Phys Chem Earth, 2017, 99: 194-203.
[19] [19] HOU D S, GAO L J, CHEN D D, et al. Molecular-scale insights on structure-efficiency relationship of silane-based waterproofing agents[J]. Constr Build Mater, 2022, 327: 126985.
[20] [20] CHEN J Z, ZHANG Y, HOU D S, et al. Experiment and molecular dynamics study on the mechanism for hydrophobic impregnation in cement-based materials: A case of octadecane carboxylic acid[J]. Constr Build Mater, 2019, 229: 116871.
[21] [21] SUN D W, YAN J H, MA X Y, et al. On the characterization of amine molecules behaviors in the nanochannels forming in calcium silicate hydrate gel[J]. Appl Surf Sci, 2021, 560: 149994.
[22] [22] ZHOU Y, HOU D S, JIANG J Y, et al. Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: A case study of tobermorite[J]. Phys Chem Chem Phys, 2017, 19(23): 15145-15159.
[23] [23] YU J, ZHENG H P, HOU D S, et al. Silane coupling agent modification treatment to improve the properties of rubber-cement composites[J]. ACS Sustain Chem Eng, 2021, 9(38): 12899-12911.
[24] [24] ZHOU A, YU Z C, WEI H N, et al. Understanding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites[J]. ACS Appl Mater Inter, 2020, 12(39): 44163-44171.
[25] [25] DU J P, BU Y H, SHEN Z H. Interfacial properties and nanostructural characteristics of epoxy resin in cement matrix[J]. Constr Build Mater, 2018, 164: 103-112.
[26] [26] WANG X F, XIE W, REN J, et al. Interfacial binding energy between calcium-silicate-hydrates and epoxy resin: A molecular dynamics study[J]. Polymers (Basel), 2021, 13(11): 1683.
[27] [27] DAI J G, YOKOTA H, IWANAMI M, et al. Experimental investigation of the influence of moisture on the bond behavior of frp to concrete interfaces[J]. J Compos Constr, 2010, 14(6): 834-844.
[28] [28] KARBHARI V M, CHIN J W, HUNSTON D, et al. Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure[J]. J Compos Constr, 2003, 7(3): 238-247.
[29] [29] SEN R. Developments in the durability of FRP-concrete bond[J]. Constr Build Mater, 2015, 78: 112-125.
[31] [31] YU Z C, ZHOU A, NING W Y, et al. Molecular insights into the weakening effect of water on cement/epoxy interface[J]. Appl Surf Sci, 2021, 553: 149493.
[32] [32] WANG P, YANG Q G, WANG M H, et al. Theoretical investigation of epoxy detachment from C-S-H interface under aggressive environment[J]. Constr Build Mater, 2020, 264: 120232.
[33] [33] JIANG F X, YANG Q R, WANG Y T, et al. Insights on the adhesive properties and debonding mechanism of CFRP/concrete interface under sulfate environment: From experiments to molecular dynamics[J]. Constr Build Mater, 2021, 269: 121247.
[34] [34] NAGESH A K, KAMALA ILANGO N, ALEX A, et al. Effect of pore solution calcium and substrate calcium on PMMA/cement paste interface during early stages of hydration[J]. J Am Ceram Soc, 2020, 103(8): 4664-4677.
[35] [35] ASKARINEJAD S, RAHBAR N. Effects of cement-polymer interface properties on mechanical response of fiber-reinforced cement composites[J]. J Nanomech Micromech, 2017, 7(2): UNSP 04017002.
[36] [36] SHALCHY F, RAHBAR N. Nanostructural characteristics and interfacial properties of polymer fibers in cement matrix[J]. ACS Appl Mater Inter, 2015, 7(31): 17278-17286.
[37] [37] WANG X F, XIE W, LI T R, et al. Molecular dynamics study on mechanical properties of interface between urea-formaldehyde resin and calcium-silicate-hydrates[J]. Materials (Basel), 2020, 13(18): 4054.
[38] [38] WANG P, QIAO G, ZHANG Y, et al. Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers[J]. Constr Build Mater, 2020, 257: 119557.
[39] [39] LIU K Q, CHENG X O, MA Y, et al. Analysis of interfacial nanostructure and interaction mechanisms between cellulose fibres and calcium silicate hydrates using experimental and molecular dynamics simulation data[J]. Appl Surf Sci, 2020, 506: 144914.
[40] [40] CHI Y, HUANG B, SAAFI M, et al. Carrot-based covalently bonded saccharides as a new 2D material for healing defective calcium-silicate-hydrate in cement: Integrating atomistic computational simulation with experimental studies[J]. Compos Part B-Eng, 2020, 199: 108235.
[41] [41] HU B, HUANG W K, YU J L, et al. Study on the adhesion performance of asphalt-calcium silicate hydrate gel interface in semi-flexible pavement materials based on molecular dynamics[J]. Materials (Basel), 2021, 14(16): 4406.
[43] [43] JAMIL T, JAVADI A, HEINZ H. Mechanism of molecular interaction of acrylate-polyethylene glycol acrylate copolymers with calcium silicate hydrate surfaces[J]. Green Chem, 2020, 22(5): 1577-1593.
[44] [44] JAVADI A, JAMIL T, ABOUZARI-LOTF E, et al. Working mechanisms and design principles of comb-like polycarboxylate ether superplasticizers in cement hydration: Quantitative insights for a series of well-defined copolymers[J]. ACS Sustain Chem Eng, 2021, 9(25): 8354-8371.
[45] [45] ZHOU Y, HOU D S, JIANG J Y, et al. Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites[J]. Chem Phys Lett, 2017, 687: 184-187.
[46] [46] ZHOU Y, OROZCO C A, DUQUE-REDONDO E, et al. Modification of poly(ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates[J]. Cem Concr Res, 2019, 115: 20-30.
[47] [47] ZHOU Y, TANG L P, LIU J P, et al. Interaction mechanisms between organic and inorganic phases in calcium silicate hydrates/poly(vinyl alcohol) composites[J]. Cem Concr Res, 2019, 125: 105891.
[48] [48] YU J, WANG N, WANG M H, et al. Recyclable rubber-cement composites produced by interfacial strengthened strategy from polyvinyl alcohol[J]. Constr Build Mater, 2020, 264: 120541.
[49] [49] HAN Q H, YANG Y Z, ZHANG J R, et al. Insights into the interfacial strengthening mechanism of waste rubber/cement paste using polyvinyl alcohol: Experimental and molecular dynamics study[J]. Cem Concr Compos, 2020, 114: 103791.
[50] [50] YU J, GAO S, HOU D S, et al. Water transport mechanisms of poly(acrylic acid), poly(vinyl alcohol), and poly(ethylene glycol) in C-S-H nanochannels: A molecular dynamics study[J]. J Phys Chem B, 2020, 124(28): 6095-6104.
[51] [51] ZHOU Y, HOU D S, MANZANO H, et al. Interfacial connection mechanisms in calcium-silicate-hydrates/polymer nanocomposites: A molecular dynamics study[J]. ACS Appl Mater Inter, 2017, 9(46): 41014-41025.
[52] [52] LUO Q, HUANG J L. Mechanisms and critical technologies of transport inhibitor agent (TIA) throughout C-S-H nano-channels[J]. Materials (Basel), 2022, 15(2): 515.
[53] [53] SANCHEZ F, ZHANG L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics[J]. J Colloid Interface Sci, 2008, 323(2): 349-358.
[55] [55] GUO X X, XIN H, LI J, et al. Molecular dynamics study on perfect and defective graphene/calcium-silicate-hydrate composites under tensile loading[J]. Mol Simulat, 2019, 45(18): 1481-1487.
[56] [56] FAN D, YANG S T, SAAFI M. Molecular dynamics simulation of mechanical properties of intercalated GO/ C-S-H nanocomposites[J]. Comp Mater Sci, 2021, 186: 110012.
[57] [57] KAI M F, ZHANG L W, LIEW K M. Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding[J]. Carbon, 2019, 146: 181-193.
[58] [58] HOU D S, LU Z Y, LI X Y, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms[J]. Carbon, 2017, 115: 188-208.
[59] [59] WAN H Y, ZHANG Y. Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete[J]. Mater Struct, 2020, 53(2): 34.
[60] [60] HOU D S, YANG T J, TANG J H, et al. Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: Functional group de-protonation, interfacial bonding and strengthening mechanism[J]. Phys Chem Chem Phys, 2018, 20(13): 8773-8789.
[61] [61] YANG Y, CAO J. Interfacial heat transfer behavior of graphene-based filler and calcium-silicate-hydrate in cement composites[J]. Int J Heat Mass Transfer, 2021, 176: 121165.
[62] [62] ZHENG Q, JIANG J, CHEN C, et al. Nanoengineering microstructure of hybrid C-S-H/silicene gel[J]. ACS Appl Mater Inter, 2020, 12(15): 17806-17814.
[63] [63] HOU D S, ZHANG W, CHEN Z, et al. A molecular dynamics study of silicene reinforced cement composite at different humidity: Surface structure, bonding, and mechanical properties[J]. Constr Build Mater, 2021, 291: 123242.
[65] [65] EFTEKHARI M, MOHAMMADI S. Molecular dynamics simulation of the nonlinear behavior of the cnt-reinforced calcium silicate hydrate (C-S-H) composite[J]. Compos Part A-Appl S, 2016, 82: 78-87.
[66] [66] MERODIO-PEREA R G, PáEZ-PAVóN A, LADO-TOURIO I. Reinforcing cement with pristine and functionalized carbon nanotubes: Experimental and simulation studies[J]. Int J Smart Nano Mat, 2020, 11(4): 370-386.
[67] [67] LUSHNIKOVA A, ZAOUI A. Improving mechanical properties of C-S-H from inserted carbon nanotubes[J]. J Phys Chem Solids, 2017, 105: 72-80.
[68] [68] LUSHNIKOVA A, ZAOUI A. Influence of single-walled carbon nantotubes structure and density on the ductility of cement paste[J]. Constr Build Mater, 2018, 172: 86-97.
[69] [69] LAANAIYA M, ZAOUI A. Preventing cement-based materials failure by embedding Fe2O3 nanoparticles[J]. Constr Build Mater, 2020, 260: 120466.
[70] [70] DU T, LI H, BAUCHY M. Molecular dynamics simulation of the precipitation of calcium silicate hydrate nanostructures under two-dimensional confinement by TiO2: Implications for advanced concretes[J]. ACS Appl Nano Mater, 2020, 3(3): 2176-2184.
[71] [71] YAO X P, LIU Y M, WANG W, et al. Role of nanofillers for high mechanical performance cementitious composites[J]. Constr Build Mater, 2022, 322: 126489.
[72] [72] SEKKAL W, ZAOUI A. Novel properties of nano-engineered cementitious materials with fullerene buckyballs[J]. Cem Concr Compos, 2021, 118: 103960.
[73] [73] SINDU B S, SASMAL S. Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite[J]. Constr Build Mater, 2020, 253: 119190.
[74] [74] LU Z Y, YU J, YAO J, et al. Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J]. Cem Concr Compos, 2020, 112: 103676.
Get Citation
Copy Citation Text
HOU Xiaowei, YIN Jianhao, KONG Xiangming. Interaction Between Chemical Admixtures and Calcium Silicate Hydrate and Chemical Admixtures Impacts on Calcium Silicate Hydrate Properties by Molecular: A Short Review Dynamics Studies[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2959
Category:
Received: Apr. 27, 2022
Accepted: --
Published Online: Jan. 27, 2023
The Author Email: Xiaowei HOU (879077237@qq.com)