Journal of Synthetic Crystals, Volume. 49, Issue 11, 1996(2020)
Current Status and Future Trends of GaNBased Blue and Green Laser Diodes
[1] [1] Sizov D, Bhat R, Zah C. Gallium Indium NitrideBased Green Lasers[J]. Journal of Lightwave Technology, 2012, 30(5):679699.
[2] [2] Ohta H, DenBaars S P, Nakamura S. Future of groupⅢ nitride semiconductor green laser diodes[J]. Journal of the Optical Society of America BOptical Physics, 27, B45B49, 2010
[3] [3] Watson S, Gwyn S, Viola S, et al. InGaN/GaN Laser Diodes and their Applications[C]// 2018 20th International Conference on Transparent Optical Networks (ICTON). 2018.
[4] [4] O’Brien D, Pary G, Stavrinou P. Optical hotspots speed up wireless communication[J]. Nature Photonics, 2007, 1(5): 245247.
[5] [5] Watson S, Tan M M, Najda S P, et al. Visible light communications using a directly modulated 422 nm GaN laser diode[J]. Optics Letters, 2013, 38(19): 37923794.
[6] [6] Najda S P, Perlin P, Leszczynski M, et al. GaN laser diodes for quantum sensors and optical atomic clocks[C]// Quantum Technologies and Quantum Information Science V, 2019.
[7] [7] Wojciech Roga, John Jeffers. Quantum Information Science and Technology II[C]// Quantum Information Science & Technology II. Quantum Information Science and Technology II, 2016.
[8] [8] Morishita Y, Nomura Y, Goto S, et al. Effect of hydrogen on the surfacediffusion length of Ga adatoms during molecularbeam epitaxy[J]. Applied Physics Letters, 1995, 67(17): 25002502.
[9] [9] Queren D, Schillgalies M, Avramescu A, et al. Quality and thermal stability of thin InGaN films[J]. Journal of Crystal Growth, 2009, 311(10):29332936.
[10] [10] Uwe Strauβ, Adrian Avramescu, Teresa Lermer, et al. Pros and cons of green InGaN laser on cplane GaN[J]. Physica Status Solidi (b), 2011, 248(3): 652657.
[11] [11] Désirée Queren, Avramescu A, Schillgalies M, et al. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift[J]. Physica Status Solidi, 2010, 6(s2): S826S829.
[12] [12] Li Z, Liu J, Feng M, et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth[J]. Appl Phys Lett, 2013, 103(15): 152109.
[13] [13] Liu J, Li Z, Zhang L, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region[J]. Appl Phys Express, 2014, 7(11): 111001.
[14] [14] Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes[J]. Opt Express, 2016, 24(13): 13824.
[15] [15] Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. Appl Phys, 2009, 105(8): 083507.
[16] [16] Li J, Oder T N, Nakarmi M L, et al. Optical and electrical properties of Mgdoped ptype AlxGa1-xN[J]. Appl Phys Lett, 2002, 80(7): 12101212.
[17] [17] Tian A, Liu J, Ikeda M, et al. Conductivity enhancement in AlGaN∶Mg by suppressing the incorporation of carbon impurity[J].Appl Phys Express, 2015, 8(5): 051001.
[18] [18] Kuramoto M, Sasaoka C, Futagawa N, et al. Reduction of internal loss and threshold current in a laser diode with a ridge by selective regrowth (RiSLD)[J]. Phys Status Solidi A, 2002, 192: 329334.
[19] [19] Schmidt O, Wolst O, Kneissl M, et al. Gain and photoluminescence spectroscopy in violet and ultraviolet InAlGaN laser structures[J]. Phys Status Solidi C, 2005, 2: 28912894.
[20] [20] Kioupakis E, Rinke P, Schleife A, et al. Freecarrier absorption in nitrides from first principles[J]. Phys Rev B, 2010, 81: 241201.
[21] [21] Kioupakis E, Rinke P, Van de Walle C G. Determination of internal loss in nitride lasers from first principles[J]. Appl Phys Express, 2010, 3: 082101.
[22] [22] David A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well lightemitting diodes[J]. Appl Phys Lett, 2008, 92: 053502.
[23] [23] Meyaard D S, Lin G B, Shan Q, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based lightemitting diodes[J]. Appl Phys Lett, 2011, 99: 251115.
[24] [24] Wang C H, Chang S P, Ku P H, et al. Hole transport improvement in InGaN/GaN lightemitting diodes by gradedcomposition multiple quantum barriers[J]. Appl Phys Lett, 2011, 99: 171106.
[25] [25] Ikeda M, Zhang F, Zhou R, et al. Thermionic emission of carriers in InGaN/(In)GaN multiple quantum wells[J]. Jpn J Appl Phys, 2019, 58: SCCB03.
[26] [26] Liu J P, Ryou J H, Dupuis R D, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible lightemitting diodes[J]. Appl Phys Lett, 2008, 93: 021102.
[27] [27] Zhou K, Ikeda M, Liu J, et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes[J]. Appl Phys Lett, 2014, 105:173510.
[28] [28] Hager T, Binder M, Bruederl G, et al. Carrier transport in green AlInGaN based structures on cplane substrates[J]. Applied Physics Letters, 2013, 102(23):311.
[29] [29] Hager T, Bruederl G, Lermer T, et al. Current dependence of electrooptical parameters in green and blue (AlIn)GaN laser diodes[J]. Applied Physics Letters, 2012, 101(17):4056.
[30] [30] Zhang S, Xie E, Yan T, et al. Hole transport assisted by the piezoelectric field in In0.4Ga0.6N/GaN quantum wells under electrical injection[J]. Journal of Applied Physics, 2015, 118(12):125709.
[31] [31] Cho Y H, Gainer G H, Fischer A J, et al. “Sshaped” temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl Phys Lett, 1998, 73: 13701372.
[32] [32] Bai J, Wang T, Sakai S. Influence of the quantumwell thickness on the radiative recombination of InGaN/GaN quantum well structures[J]. Appl Phys, 2000, 88: 47294733.
[33] [33] Seo Im J, Kollmer H, Off J, et al. Reduction of oscillator strength due to piezoelectric fields in GaNAlxGa1-xN quantum wells[J]. Phys Rev B, 1998, 57: R9435R9438.
[34] [34] Peng L H, Chuang C W, Lou L H. Piezoelectric effects in the optical properties of strained InGaN quantum wells[J]. Appl Phys Lett, 1999, 74: 795797.
[35] [35] Chang S J, Lai W C, Su Y K, et al. InGaNGaN multiquantumwell blue and green lightemitting diodes[J].IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2):278283.
[36] [36] Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaNbased lightemitting diodes[J]. Appl Phys Lett, 2001, 78: 2617619.
[38] [38] Kioupakis, Emmanouil. Auger recombination and freecarrier absorption in nitrides from first principles[J]. American Physical Society, 2010, 81(24): 775780.
[39] [39] Kioupakis E, Rinke P, Delaney K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride lightemitting diodes[J]. Applied Physics Letters, 2011, 98(16): 161107.
[40] [40] Feng M X, Liu J P, Zhang S M, et al. Design considerations for GaNbased blue laser diodes with InGaN upper waveguide layer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 15007051500705.
[41] [41] Liu J, Zhang L, Li D, et al. GaNbased blue laser diodes with 2.2 W of light output power under continuouswave operation[J]. IEEE Photonics Technology Letters, 2017(24): 11.
[42] [42] Krames M R, Shchekin O B, MuellerMach R, et al. IEEE/OSA status and future of high power light emitting diodes for solid state lighting[J]. Journal of Display Technology, 2007, 3(2): 160175.
[43] [43] Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue lightemitting diodes: Physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101.
[44] [44] Wang C H, Ke C C, Lee C Y, et al. Hole injection and efficiency droop improvement in InGaN/GaN lightemitting diodes by bandengineered electron blocking layer[J]. Applied Physics Letters, 2010, 97(26): 261103.
[45] [45] Brüninghoff S,Tautz S,Sabathil M,et al.Temperature dependence of blue InGaN lasers[C]//SPIE OPTO:Integrated Optoelectronic Devices.Proc SPIE 7216,Gallium Nitride Materials and Devices IV,San Jose,California,USA.2009,7216:72161C.
[46] [46] Nakamura S. InGaNbased blue laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(3):712718.
[47] [47] Farrell R M, Haeger D A, Hsu P S, et al. Determination of internal parameters for AlGaNcladdingfree mplane InGaN/GaN laser diodes[J]. Appl Phys Lett, 2011, 99: 171115.
[48] [48] Duff A I, Lymperakis L, Neugebauer J. Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces:An ab initio approach[J]. Phys Rev B, 2014, 89:085307.
[49] [49] Stringfellow G B. Microstructures produced during the epitaxial growth of InGaN alloys[J]. Journal of Crystal Growth, 2010, 312(6):735749.
[50] [50] Tian A, Liu J, Zhang L, et al. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN∶Mg cladding layer[J]. Phys Status Solidi C, 2016, 13: 245247.
[51] [51] Hu L, Ren X, Liu J, et al. Highpower hybrid GaNbased green laser diodes with ITO cladding layer[J]. Photon Res, 2020, 8: 279.
[53] [53] Pohl U W. Epitaxy of semiconductors:introduction to physical principles[J]. Graduate Texts in Physics, 2013, 31(1): 4550.
[54] [54] Graham W R, Ehrlich G. Surface selfdiffusion of atoms and atom pairs[J]. Physical Review Letters, 1973, 31(23): 14071408.
[55] [55] Wang S C, Ehrlich G. Adatom motion to lattice steps: a direct view[J]. Physical Review Letters, 1993, 70(1): 4144.
[56] [56] Liu S J, Wang E G, Woo C H, et al. Threedimensional SchwoebelEhrlich barrier[J]. Journal of ComputerAided Materials Design, 2000, 7(3): 195201.
[57] [57] Liu S J, Huang H, Woo C H. SchwoebelEhrlich barrier: from two to three dimensions[J]. Applied Physics Letters, 2002, 80: 32953297.
[58] [58] Oliver R A, Kappers M J, Humphreys C J, et al. Growth modes in heteroepitaxy of InGaN on GaN[J]. Appl Phys, 2005, 97: 013707.
[59] [59] Oliver R A, Kappers M J, Humphreys C J, et al. The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy[J]. Cryst Growth, 2004, 272: 393399.
[60] [60] Tian A, Liu J, Zhang L, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region[J]. Opt Express, 2017, 25: 415.
[61] [61] Florescu D I, Ting S M, Merai V N, et al. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets[J]. Phys Status Solidi C, 2006, 3:18111814.
[62] [62] Falta J, Schmidt T, Gangopadhyay S, et al. Cleaning and growth morphology of GaN and InGaN surfaces[J]. Phys Status Solidi B, 2011, 248: 18001809.
[63] [63] Kadir A, Meissner C, Schwaner T, et al. Growth mechanism of InGaN quantum dots during metalorganic vapor phase epitaxy[J]. Journal of Crystal Growth, 2011, 334(1):4045.
[64] [64] Pristovsek M, Kadir A, Meissner C, et al. Growth mode transition and relaxation of thin InGaN layers on GaN (0001)[J]. Journal of Crystal Growth, 2013, 372: 6572.
[65] [65] Massabuau F C P, Davies M J, Oehler F, et al. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem[J]. Appl Phys Lett, 2014, 105: 112110.
[66] [66] Massabuau F C P, Sahonta S L, TrinhXuan L, et al. Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structures[J]. Appl Phys Lett, 2012, 101: 212107.
[67] [67] Massabuau C P, TrinhXuan L, Lodie D, et al. Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells[J]. Journal of Applied Physics, 2013, 113(7): 3675.
[68] [68] Suihkonen S, Svensk O, Lang T, et al. The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency[J]. Journal of Crystal Growth, 2007, 298: 740743.
[69] [69] Suihkonen S, Lang T, Svensk O, et al. Control of the morphology of InGaN/GaN quantum wells grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2007,300: 324329.
[70] [70] Taylor E, Fang F, Oehler F, et al. Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates[J]. Semiconductor Science and Technology, 2013, 28: 065011.
[71] [71] Scholz F, Off J, Fehrenbacher E, et al. Investigations on Structural Properties of GaInN/GaN Multi Quantum Well Structures[J]. Physics Status Solisi (a), 2000, 180: 315320.
[72] [72] Liu J P, Wang Y T, Yang H, et al. Investigations on Vdefects in quaternary AlInGaN epilayers[J]. Applied Physics Letters, 2004, 84: 5449.
[73] [73] Shiojiri M, Chuo C C, Hsu J T, et al. Structure and formation mechanism of V defects in multiple InGaN/GaN quantum well layers[J]. Journal of Applied Physics, 2006, 99: 073505.
[74] [74] Florescu D I, Ting S M, Ramer J C, et al. Investigation of Vdefects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire[J]. Applied Physics Letters, 2003, 83: 33.
[75] [75] Tian A, Liu J, Zhou R, et al. Green laser diodes with constant temperature growth of InGaN/GaN multiple quantum well active region[J]. Appl Phys Express, 2019, 12: 064007.
[76] [76] Tian A, Hu L, Zhang L, et al. Design and growth of GaNbased blue and green laser diodes[J]. Science China Materials, 2020,63(8): 13481363.
[77] [77] Jiang L G, Liu J P, Zhang L Q, et al. Suppression of substrate mode in GaNbased green laser diodes[J].Optics Express, 28(10):15497.
[78] [78] Strauss U, Eichler C, Rumbolz C, et al. Beam quality of blue InGaN laser for projection[J]. Physica Status Solidi c, 2008, 5(6): 20772079.
[79] [79] Lermer T, Schillgalies M, Breidenassel A, et al. Waveguide design of green InGaN laser diodes[J]. Physica Status Solidi, 2010, 207(6):13281331.
[80] [80] Mehari S, Cohen D A, Becerra D L, et al. Demonstration of enhanced continuouswave operation of blue laser diodes on a semipolar 2021 GaN substrate using indiumtinoxide/thinpGaN cladding layers[J]. Optics Express, 2018, 26(2):1564.
[81] [81] Murayama M, Nakayama Y, Yamazaki K, et al. Wattclass green (530 nm) and blue (465 nm) laser diodes[J]. Physica Status Solidi (A) Applications and Materials, 2017, 215(10):1700513.11700513.5.
[82] [82] Uwe Strauβ, Hager T, Georg Brüderl, et al. Recent advances in cplane GaN visible lasers[C]// Conference on Gallium Nitride Materials & Devices IX. 2014. p. 89861L.
[83] [83] Kuramoto M, Kobayashi S, Akagi T, et al. Highpower GaNbased verticalcavity surfaceemitting lasers with AlInN/GaN distributed bragg reflectors[J]. Appl Sci, 2019, 9: 416.
[84] [84] Muranaga W, Akagi T, Fuwa R, et al. GaNbased verticalcavity surfaceemitting lasers using ntype conductive AllnN/GaN bottom distributed Bragg reflectors with graded interfaces[J]. Japanese Journal of Applied Physics, 2019, 58(SC):SCCC01.1SCCC01.7.
[85] [85] Elafandy R T, Kang J H, Li B, et al. Roomtemperature operation of cplane GaN vertical cavity surface emitting laser on conductive nanoporous distributed Bragg reflector[J]. Applied Physics Letters, 2020, 117(1):011101.
[86] [86] Hamaguchi T, Nakajima H, Ito M, et al. Lateral carrier confinement of GaNbased verticalcavity surfaceemitting diodes using boron ion implantation[J]. Appl Phys, 2016 55(12):122101.
[87] [87] Hayashi N, Ogimoto J, Matsui K, et al. A GaNbased VCSEL with a convex structure for optical guiding[J]. Physica Status Solidi(a), 2018, 215(10):1700648.
[88] [88] Mei Y, Weng G E, Zhang B P, et al. Quantum dot verticalcavity surfaceemitting lasers covering the ‘green gap’[J]. Light Science & Applications, 2016, 6(1): e16199.
[89] [89] Weng G E, Yang M, Liu J P, et al. Low threshold continuouswave lasing of yellowgreen InGaNQD verticalcavity surfaceemitting lasers[J]. Optics Express, 2016.
[90] [90] Lu T C, Chen S W, Wu T T, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Appl Phys Lett, 2010, 97: 071114.
[91] [91] Kasahara D, Morita D, Kosugi T, et al. Demonstration of blue and green GaNbased verticalcavity surfaceemitting lasers by current injection at room temperature[J]. Appl Phys Express, 2011, 4: 072103.
[92] [92] Liu W J, Hu X L, Ying L Y, et al. Room temperature continuous wave lasing of electrically injected GaNbased vertical cavity surface emitting lasers[J]. Appl Phys Lett, 2014, 104: 251116.
[93] [93] Holder C, Speck J S, DenBaars S P, et al. Demonstration of nonpolar GaNbased verticalcavity surfaceemitting lasers[J]. Appl Phys Express 2012, 5: 092104.
[94] [94] Onishi T, Imafuji O, Nagamatsu K, et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature[J]. IEEE Journal of Quantum Electron, 2012, 48: 11071112.
[95] [95] Izumi S, Fuutagawa N, Hamaguchi T, et al. Roomtemperature continuouswave operation of GaNbased verticalcavity surfaceemitting lasers fabricated using epitaxial lateral overgrowth[J]. Appl Phys Express, 2015, 8: 062702.
[96] [96] Leonard J T, Cohen D A, Yonkee B P, et al. Nonpolar IIInitride verticalcavity surfaceemitting lasers incorporating an ion implanted aperture[J]. Applied Physics Letters, 2015, 107(1): 1201.
[97] [97] Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwattclass GaNbased blue verticalcavity surfaceemitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi, 2016, 213(5): 11701176.
[98] [98] Hamaguchi, Tatsushi, Nakajima, et al. Submilliamperethreshold continuous wave operation of GaNbased verticalcavity surfaceemitting laser with lateral optical confinement by curved mirror[J]. Applied Physics Express, 2019, 12: 044004.
[99] [99] Hamaguchi T, Hoshina Y, Hayashi K, et al. Roomtemperature continuouswave operation of green verticalcavity surfaceemitting lasers with a curved mirror fabricated on {20-21} semipolar GaN[J]. Applied Physics Express, 2020, 13(4).
[100] [100] HolguínLerma, Jorge A, Khee N T, et al. Narrowline InGaN/GaN green laser diode with highorder distributedfeedback surface grating[J]. Applied Physics Express, 2019, 12: 042007.
[101] [101] Deng Z J, Li J Z, Liao M L, et al. InGaN/GaN distributed feedback laser diodes with surface gratings and sidewall gratings[J]. Micromachines, 2019, 10(10):699.
[102] [102] Li J, Huang F, Yang H, et al. The MOCVD overgrowth studies of IIINitride on Bragg grating for distributed feedback lasers[C]. Fourteenth National Conference on Laser Technology and Optoelectronics, 2019.
[103] [103] Zhang H, Cohen D A, Chan P, et al. Continuouswave operation of a semipolar InGaN distributedfeedback blue laser diode with a firstorder indium tin oxide surface grating[J]. Optics Letters, 2019, 44(12):3106.
[104] [104] Kang J H, Wenzel H, Freier E, et al. Continuous wave operation of DFB laser diodes based on GaN using 10th order laterally coupled surface gratings[J]. Optics Letters, 2020, 45(4): 385002.
Get Citation
Copy Citation Text
LI Fangzhi, HU Lei, TIAN Aiqin, JIANG Lingrong, ZHANG Liqun, LI Deyao, IKEDA Masao, LIU Jianping, YANG Hui. Current Status and Future Trends of GaNBased Blue and Green Laser Diodes[J]. Journal of Synthetic Crystals, 2020, 49(11): 1996
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: Fangzhi LI (fzli2020@sinano.ac.cn)
CSTR:32186.14.