Journal of Synthetic Crystals, Volume. 49, Issue 11, 1996(2020)

Current Status and Future Trends of GaNBased Blue and Green Laser Diodes

LI Fangzhi1...2,*, HU Lei1,2, TIAN Aiqin2, JIANG Lingrong1,2, ZHANG Liqun2, LI Deyao2, IKEDA Masao2, LIU Jianping1,2, and YANG Hui12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(102)

    [1] [1] Sizov D, Bhat R, Zah C. Gallium Indium NitrideBased Green Lasers[J]. Journal of Lightwave Technology, 2012, 30(5):679699.

    [2] [2] Ohta H, DenBaars S P, Nakamura S. Future of groupⅢ nitride semiconductor green laser diodes[J]. Journal of the Optical Society of America BOptical Physics, 27, B45B49, 2010

    [3] [3] Watson S, Gwyn S, Viola S, et al. InGaN/GaN Laser Diodes and their Applications[C]// 2018 20th International Conference on Transparent Optical Networks (ICTON). 2018.

    [4] [4] O’Brien D, Pary G, Stavrinou P. Optical hotspots speed up wireless communication[J]. Nature Photonics, 2007, 1(5): 245247.

    [5] [5] Watson S, Tan M M, Najda S P, et al. Visible light communications using a directly modulated 422 nm GaN laser diode[J]. Optics Letters, 2013, 38(19): 37923794.

    [6] [6] Najda S P, Perlin P, Leszczynski M, et al. GaN laser diodes for quantum sensors and optical atomic clocks[C]// Quantum Technologies and Quantum Information Science V, 2019.

    [7] [7] Wojciech Roga, John Jeffers. Quantum Information Science and Technology II[C]// Quantum Information Science & Technology II. Quantum Information Science and Technology II, 2016.

    [8] [8] Morishita Y, Nomura Y, Goto S, et al. Effect of hydrogen on the surfacediffusion length of Ga adatoms during molecularbeam epitaxy[J]. Applied Physics Letters, 1995, 67(17): 25002502.

    [9] [9] Queren D, Schillgalies M, Avramescu A, et al. Quality and thermal stability of thin InGaN films[J]. Journal of Crystal Growth, 2009, 311(10):29332936.

    [10] [10] Uwe Strauβ, Adrian Avramescu, Teresa Lermer, et al. Pros and cons of green InGaN laser on cplane GaN[J]. Physica Status Solidi (b), 2011, 248(3): 652657.

    [11] [11] Désirée Queren, Avramescu A, Schillgalies M, et al. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift[J]. Physica Status Solidi, 2010, 6(s2): S826S829.

    [12] [12] Li Z, Liu J, Feng M, et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth[J]. Appl Phys Lett, 2013, 103(15): 152109.

    [13] [13] Liu J, Li Z, Zhang L, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region[J]. Appl Phys Express, 2014, 7(11): 111001.

    [14] [14] Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes[J]. Opt Express, 2016, 24(13): 13824.

    [15] [15] Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. Appl Phys, 2009, 105(8): 083507.

    [16] [16] Li J, Oder T N, Nakarmi M L, et al. Optical and electrical properties of Mgdoped ptype AlxGa1-xN[J]. Appl Phys Lett, 2002, 80(7): 12101212.

    [17] [17] Tian A, Liu J, Ikeda M, et al. Conductivity enhancement in AlGaN∶Mg by suppressing the incorporation of carbon impurity[J].Appl Phys Express, 2015, 8(5): 051001.

    [18] [18] Kuramoto M, Sasaoka C, Futagawa N, et al. Reduction of internal loss and threshold current in a laser diode with a ridge by selective regrowth (RiSLD)[J]. Phys Status Solidi A, 2002, 192: 329334.

    [19] [19] Schmidt O, Wolst O, Kneissl M, et al. Gain and photoluminescence spectroscopy in violet and ultraviolet InAlGaN laser structures[J]. Phys Status Solidi C, 2005, 2: 28912894.

    [20] [20] Kioupakis E, Rinke P, Schleife A, et al. Freecarrier absorption in nitrides from first principles[J]. Phys Rev B, 2010, 81: 241201.

    [21] [21] Kioupakis E, Rinke P, Van de Walle C G. Determination of internal loss in nitride lasers from first principles[J]. Appl Phys Express, 2010, 3: 082101.

    [22] [22] David A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well lightemitting diodes[J]. Appl Phys Lett, 2008, 92: 053502.

    [23] [23] Meyaard D S, Lin G B, Shan Q, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based lightemitting diodes[J]. Appl Phys Lett, 2011, 99: 251115.

    [24] [24] Wang C H, Chang S P, Ku P H, et al. Hole transport improvement in InGaN/GaN lightemitting diodes by gradedcomposition multiple quantum barriers[J]. Appl Phys Lett, 2011, 99: 171106.

    [25] [25] Ikeda M, Zhang F, Zhou R, et al. Thermionic emission of carriers in InGaN/(In)GaN multiple quantum wells[J]. Jpn J Appl Phys, 2019, 58: SCCB03.

    [26] [26] Liu J P, Ryou J H, Dupuis R D, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible lightemitting diodes[J]. Appl Phys Lett, 2008, 93: 021102.

    [27] [27] Zhou K, Ikeda M, Liu J, et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes[J]. Appl Phys Lett, 2014, 105:173510.

    [28] [28] Hager T, Binder M, Bruederl G, et al. Carrier transport in green AlInGaN based structures on cplane substrates[J]. Applied Physics Letters, 2013, 102(23):311.

    [29] [29] Hager T, Bruederl G, Lermer T, et al. Current dependence of electrooptical parameters in green and blue (AlIn)GaN laser diodes[J]. Applied Physics Letters, 2012, 101(17):4056.

    [30] [30] Zhang S, Xie E, Yan T, et al. Hole transport assisted by the piezoelectric field in In0.4Ga0.6N/GaN quantum wells under electrical injection[J]. Journal of Applied Physics, 2015, 118(12):125709.

    [31] [31] Cho Y H, Gainer G H, Fischer A J, et al. “Sshaped” temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl Phys Lett, 1998, 73: 13701372.

    [32] [32] Bai J, Wang T, Sakai S. Influence of the quantumwell thickness on the radiative recombination of InGaN/GaN quantum well structures[J]. Appl Phys, 2000, 88: 47294733.

    [33] [33] Seo Im J, Kollmer H, Off J, et al. Reduction of oscillator strength due to piezoelectric fields in GaNAlxGa1-xN quantum wells[J]. Phys Rev B, 1998, 57: R9435R9438.

    [34] [34] Peng L H, Chuang C W, Lou L H. Piezoelectric effects in the optical properties of strained InGaN quantum wells[J]. Appl Phys Lett, 1999, 74: 795797.

    [35] [35] Chang S J, Lai W C, Su Y K, et al. InGaNGaN multiquantumwell blue and green lightemitting diodes[J].IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2):278283.

    [36] [36] Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaNbased lightemitting diodes[J]. Appl Phys Lett, 2001, 78: 2617619.

    [38] [38] Kioupakis, Emmanouil. Auger recombination and freecarrier absorption in nitrides from first principles[J]. American Physical Society, 2010, 81(24): 775780.

    [39] [39] Kioupakis E, Rinke P, Delaney K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride lightemitting diodes[J]. Applied Physics Letters, 2011, 98(16): 161107.

    [40] [40] Feng M X, Liu J P, Zhang S M, et al. Design considerations for GaNbased blue laser diodes with InGaN upper waveguide layer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 15007051500705.

    [41] [41] Liu J, Zhang L, Li D, et al. GaNbased blue laser diodes with 2.2 W of light output power under continuouswave operation[J]. IEEE Photonics Technology Letters, 2017(24): 11.

    [42] [42] Krames M R, Shchekin O B, MuellerMach R, et al. IEEE/OSA status and future of high power light emitting diodes for solid state lighting[J]. Journal of Display Technology, 2007, 3(2): 160175.

    [43] [43] Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue lightemitting diodes: Physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101.

    [44] [44] Wang C H, Ke C C, Lee C Y, et al. Hole injection and efficiency droop improvement in InGaN/GaN lightemitting diodes by bandengineered electron blocking layer[J]. Applied Physics Letters, 2010, 97(26): 261103.

    [45] [45] Brüninghoff S,Tautz S,Sabathil M,et al.Temperature dependence of blue InGaN lasers[C]//SPIE OPTO:Integrated Optoelectronic Devices.Proc SPIE 7216,Gallium Nitride Materials and Devices IV,San Jose,California,USA.2009,7216:72161C.

    [46] [46] Nakamura S. InGaNbased blue laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(3):712718.

    [47] [47] Farrell R M, Haeger D A, Hsu P S, et al. Determination of internal parameters for AlGaNcladdingfree mplane InGaN/GaN laser diodes[J]. Appl Phys Lett, 2011, 99: 171115.

    [48] [48] Duff A I, Lymperakis L, Neugebauer J. Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces:An ab initio approach[J]. Phys Rev B, 2014, 89:085307.

    [49] [49] Stringfellow G B. Microstructures produced during the epitaxial growth of InGaN alloys[J]. Journal of Crystal Growth, 2010, 312(6):735749.

    [50] [50] Tian A, Liu J, Zhang L, et al. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN∶Mg cladding layer[J]. Phys Status Solidi C, 2016, 13: 245247.

    [51] [51] Hu L, Ren X, Liu J, et al. Highpower hybrid GaNbased green laser diodes with ITO cladding layer[J]. Photon Res, 2020, 8: 279.

    [53] [53] Pohl U W. Epitaxy of semiconductors:introduction to physical principles[J]. Graduate Texts in Physics, 2013, 31(1): 4550.

    [54] [54] Graham W R, Ehrlich G. Surface selfdiffusion of atoms and atom pairs[J]. Physical Review Letters, 1973, 31(23): 14071408.

    [55] [55] Wang S C, Ehrlich G. Adatom motion to lattice steps: a direct view[J]. Physical Review Letters, 1993, 70(1): 4144.

    [56] [56] Liu S J, Wang E G, Woo C H, et al. Threedimensional SchwoebelEhrlich barrier[J]. Journal of ComputerAided Materials Design, 2000, 7(3): 195201.

    [57] [57] Liu S J, Huang H, Woo C H. SchwoebelEhrlich barrier: from two to three dimensions[J]. Applied Physics Letters, 2002, 80: 32953297.

    [58] [58] Oliver R A, Kappers M J, Humphreys C J, et al. Growth modes in heteroepitaxy of InGaN on GaN[J]. Appl Phys, 2005, 97: 013707.

    [59] [59] Oliver R A, Kappers M J, Humphreys C J, et al. The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy[J]. Cryst Growth, 2004, 272: 393399.

    [60] [60] Tian A, Liu J, Zhang L, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region[J]. Opt Express, 2017, 25: 415.

    [61] [61] Florescu D I, Ting S M, Merai V N, et al. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets[J]. Phys Status Solidi C, 2006, 3:18111814.

    [62] [62] Falta J, Schmidt T, Gangopadhyay S, et al. Cleaning and growth morphology of GaN and InGaN surfaces[J]. Phys Status Solidi B, 2011, 248: 18001809.

    [63] [63] Kadir A, Meissner C, Schwaner T, et al. Growth mechanism of InGaN quantum dots during metalorganic vapor phase epitaxy[J]. Journal of Crystal Growth, 2011, 334(1):4045.

    [64] [64] Pristovsek M, Kadir A, Meissner C, et al. Growth mode transition and relaxation of thin InGaN layers on GaN (0001)[J]. Journal of Crystal Growth, 2013, 372: 6572.

    [65] [65] Massabuau F C P, Davies M J, Oehler F, et al. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem[J]. Appl Phys Lett, 2014, 105: 112110.

    [66] [66] Massabuau F C P, Sahonta S L, TrinhXuan L, et al. Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structures[J]. Appl Phys Lett, 2012, 101: 212107.

    [67] [67] Massabuau C P, TrinhXuan L, Lodie D, et al. Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells[J]. Journal of Applied Physics, 2013, 113(7): 3675.

    [68] [68] Suihkonen S, Svensk O, Lang T, et al. The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency[J]. Journal of Crystal Growth, 2007, 298: 740743.

    [69] [69] Suihkonen S, Lang T, Svensk O, et al. Control of the morphology of InGaN/GaN quantum wells grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2007,300: 324329.

    [70] [70] Taylor E, Fang F, Oehler F, et al. Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates[J]. Semiconductor Science and Technology, 2013, 28: 065011.

    [71] [71] Scholz F, Off J, Fehrenbacher E, et al. Investigations on Structural Properties of GaInN/GaN Multi Quantum Well Structures[J]. Physics Status Solisi (a), 2000, 180: 315320.

    [72] [72] Liu J P, Wang Y T, Yang H, et al. Investigations on Vdefects in quaternary AlInGaN epilayers[J]. Applied Physics Letters, 2004, 84: 5449.

    [73] [73] Shiojiri M, Chuo C C, Hsu J T, et al. Structure and formation mechanism of V defects in multiple InGaN/GaN quantum well layers[J]. Journal of Applied Physics, 2006, 99: 073505.

    [74] [74] Florescu D I, Ting S M, Ramer J C, et al. Investigation of Vdefects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire[J]. Applied Physics Letters, 2003, 83: 33.

    [75] [75] Tian A, Liu J, Zhou R, et al. Green laser diodes with constant temperature growth of InGaN/GaN multiple quantum well active region[J]. Appl Phys Express, 2019, 12: 064007.

    [76] [76] Tian A, Hu L, Zhang L, et al. Design and growth of GaNbased blue and green laser diodes[J]. Science China Materials, 2020,63(8): 13481363.

    [77] [77] Jiang L G, Liu J P, Zhang L Q, et al. Suppression of substrate mode in GaNbased green laser diodes[J].Optics Express, 28(10):15497.

    [78] [78] Strauss U, Eichler C, Rumbolz C, et al. Beam quality of blue InGaN laser for projection[J]. Physica Status Solidi c, 2008, 5(6): 20772079.

    [79] [79] Lermer T, Schillgalies M, Breidenassel A, et al. Waveguide design of green InGaN laser diodes[J]. Physica Status Solidi, 2010, 207(6):13281331.

    [80] [80] Mehari S, Cohen D A, Becerra D L, et al. Demonstration of enhanced continuouswave operation of blue laser diodes on a semipolar 2021 GaN substrate using indiumtinoxide/thinpGaN cladding layers[J]. Optics Express, 2018, 26(2):1564.

    [81] [81] Murayama M, Nakayama Y, Yamazaki K, et al. Wattclass green (530 nm) and blue (465 nm) laser diodes[J]. Physica Status Solidi (A) Applications and Materials, 2017, 215(10):1700513.11700513.5.

    [82] [82] Uwe Strauβ, Hager T, Georg Brüderl, et al. Recent advances in cplane GaN visible lasers[C]// Conference on Gallium Nitride Materials & Devices IX. 2014. p. 89861L.

    [83] [83] Kuramoto M, Kobayashi S, Akagi T, et al. Highpower GaNbased verticalcavity surfaceemitting lasers with AlInN/GaN distributed bragg reflectors[J]. Appl Sci, 2019, 9: 416.

    [84] [84] Muranaga W, Akagi T, Fuwa R, et al. GaNbased verticalcavity surfaceemitting lasers using ntype conductive AllnN/GaN bottom distributed Bragg reflectors with graded interfaces[J]. Japanese Journal of Applied Physics, 2019, 58(SC):SCCC01.1SCCC01.7.

    [85] [85] Elafandy R T, Kang J H, Li B, et al. Roomtemperature operation of cplane GaN vertical cavity surface emitting laser on conductive nanoporous distributed Bragg reflector[J]. Applied Physics Letters, 2020, 117(1):011101.

    [86] [86] Hamaguchi T, Nakajima H, Ito M, et al. Lateral carrier confinement of GaNbased verticalcavity surfaceemitting diodes using boron ion implantation[J]. Appl Phys, 2016 55(12):122101.

    [87] [87] Hayashi N, Ogimoto J, Matsui K, et al. A GaNbased VCSEL with a convex structure for optical guiding[J]. Physica Status Solidi(a), 2018, 215(10):1700648.

    [88] [88] Mei Y, Weng G E, Zhang B P, et al. Quantum dot verticalcavity surfaceemitting lasers covering the ‘green gap’[J]. Light Science & Applications, 2016, 6(1): e16199.

    [89] [89] Weng G E, Yang M, Liu J P, et al. Low threshold continuouswave lasing of yellowgreen InGaNQD verticalcavity surfaceemitting lasers[J]. Optics Express, 2016.

    [90] [90] Lu T C, Chen S W, Wu T T, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Appl Phys Lett, 2010, 97: 071114.

    [91] [91] Kasahara D, Morita D, Kosugi T, et al. Demonstration of blue and green GaNbased verticalcavity surfaceemitting lasers by current injection at room temperature[J]. Appl Phys Express, 2011, 4: 072103.

    [92] [92] Liu W J, Hu X L, Ying L Y, et al. Room temperature continuous wave lasing of electrically injected GaNbased vertical cavity surface emitting lasers[J]. Appl Phys Lett, 2014, 104: 251116.

    [93] [93] Holder C, Speck J S, DenBaars S P, et al. Demonstration of nonpolar GaNbased verticalcavity surfaceemitting lasers[J]. Appl Phys Express 2012, 5: 092104.

    [94] [94] Onishi T, Imafuji O, Nagamatsu K, et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature[J]. IEEE Journal of Quantum Electron, 2012, 48: 11071112.

    [95] [95] Izumi S, Fuutagawa N, Hamaguchi T, et al. Roomtemperature continuouswave operation of GaNbased verticalcavity surfaceemitting lasers fabricated using epitaxial lateral overgrowth[J]. Appl Phys Express, 2015, 8: 062702.

    [96] [96] Leonard J T, Cohen D A, Yonkee B P, et al. Nonpolar IIInitride verticalcavity surfaceemitting lasers incorporating an ion implanted aperture[J]. Applied Physics Letters, 2015, 107(1): 1201.

    [97] [97] Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwattclass GaNbased blue verticalcavity surfaceemitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi, 2016, 213(5): 11701176.

    [98] [98] Hamaguchi, Tatsushi, Nakajima, et al. Submilliamperethreshold continuous wave operation of GaNbased verticalcavity surfaceemitting laser with lateral optical confinement by curved mirror[J]. Applied Physics Express, 2019, 12: 044004.

    [99] [99] Hamaguchi T, Hoshina Y, Hayashi K, et al. Roomtemperature continuouswave operation of green verticalcavity surfaceemitting lasers with a curved mirror fabricated on {20-21} semipolar GaN[J]. Applied Physics Express, 2020, 13(4).

    [100] [100] HolguínLerma, Jorge A, Khee N T, et al. Narrowline InGaN/GaN green laser diode with highorder distributedfeedback surface grating[J]. Applied Physics Express, 2019, 12: 042007.

    [101] [101] Deng Z J, Li J Z, Liao M L, et al. InGaN/GaN distributed feedback laser diodes with surface gratings and sidewall gratings[J]. Micromachines, 2019, 10(10):699.

    [102] [102] Li J, Huang F, Yang H, et al. The MOCVD overgrowth studies of IIINitride on Bragg grating for distributed feedback lasers[C]. Fourteenth National Conference on Laser Technology and Optoelectronics, 2019.

    [103] [103] Zhang H, Cohen D A, Chan P, et al. Continuouswave operation of a semipolar InGaN distributedfeedback blue laser diode with a firstorder indium tin oxide surface grating[J]. Optics Letters, 2019, 44(12):3106.

    [104] [104] Kang J H, Wenzel H, Freier E, et al. Continuous wave operation of DFB laser diodes based on GaN using 10th order laterally coupled surface gratings[J]. Optics Letters, 2020, 45(4): 385002.

    CLP Journals

    [1] ZHAN Tingwu, JIA Wei, DONG Hailiang, LI Tianbao, JIA Zhigang, XU Bingshe. Preparation and Optical Properties of Porous GaN Thin Films[J]. Journal of Synthetic Crystals, 2023, 52(9): 1599

    [2] HOU Yanyu, DONG Hailiang, JIA Zhigang, JIA Wei, LIANG Jian, XU Bingshe. Effect of Composition Step-Graded InGaN Barriers on Photoelectric Performance of Green Laser Diode[J]. Journal of Synthetic Crystals, 2023, 52(8): 1386

    Tools

    Get Citation

    Copy Citation Text

    LI Fangzhi, HU Lei, TIAN Aiqin, JIANG Lingrong, ZHANG Liqun, LI Deyao, IKEDA Masao, LIU Jianping, YANG Hui. Current Status and Future Trends of GaNBased Blue and Green Laser Diodes[J]. Journal of Synthetic Crystals, 2020, 49(11): 1996

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email: Fangzhi LI (fzli2020@sinano.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics