Journal of Innovative Optical Health Sciences, Volume. 11, Issue 5, 1850032(2018)

In vivo monitoring of microneedle-based transdermal drug delivery of insulin

Jiawei Zhao1,*... Yongbo Wu1, Junbo Chen1, Bangrong Lu1, Honglian Xiong2, Zhilie Tang1 and Yanhong Ji1 |Show fewer author(s)
Author Affiliations
  • 1School of Physics and Telecom Engineering South China Normal University, No.378 West Waihuan Street Guangzhou 510006, P. R. China
  • 2MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science College of Biophotonics, South China Normal University No.55 Zhongshan Xi Road, Guangzhou 510631, P. R. China
  • show less
    References(37)

    [1] [1] J. G. Llaurado, "Insulin delivery control systems for diabetics," Int. J. Biomed. Comput. 14, 1–3 (1983).

    [2] [2] Y. Y. Luo, X. Y. Xiong, Y. Tian, Z. L. Li, Y. C. Gong, Y. P. Li, "A review of biodegradable polymeric systems for oral insulin delivery," Drug Deliv. 23, 1–10 (2015).

    [3] [3] N. Jeandidier, S. Boivin, "Current status and future prospects of parenteral insulin regimens, strategies and delivery systems for diabetes treatment," Adv. Drug Deliv. Rev. 35, 179–198 (1999).

    [4] [4] V. I. Sevast'Yanov, L. A. Salomatina, E. G. Kuznetsova, N. V. Yakovleva, V. I. Shumakov, "Transdermal insulin delivery systems," Biomed. Eng. 37, 90–94 (2003).

    [5] [5] M. R. Prausnitz, S. Mitragotri, R. Langer, "Current status and future potential of transdermal drug delivery," Nat. Rev. Drug Discov. 3, 115–124 (2004).

    [6] [6] J. D. Bos, M. M. Meinardi, "The 500 Dalton rule for the skin penetration of chemical compounds and drugs," Exp. Dermatol. 9, 165–169 (2000).

    [7] [7] W. Martanto, S. P. Davis, N. J. Holiday, J. Wang, H. S. Gill, M. R. Prausnitz, "Transdermal delivery of insulin using microneedles in vivo," Pharm. Res. 21, 947–952 (2004).

    [8] [8] J. A. Mikszta, J. B. Alarcon, J. M. Brittingham, D. E. Sutter, R. J. Pettis, N. G. Harvey, "Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery," Nat. Med. 8, 415–419 (2002).

    [9] [9] D. G. Koutsonanos, M. D. P. Martin, V. G. Zarnitsyn, S. P. Sullivan, R. W. Compans, M. R. Prausnitz, I. Skountzou, "Transdermal influenza immunization with vaccine-coated microneedle arrays," PLoS One 4, e4773 (2009).

    [10] [10] M. R. Prausnitz, "Microneedles for transdermal drug delivery," Adv. Drug Deliv. Rev. 56, 581–587 (2004).

    [11] [11] S. Henry, D. V. Mcallister, M. G. Allen, M. R. Prausnitz, "Microfabricated microneedles: A novel approach to transdermal drug delivery," J. Pharm. Sci. 87, 922–925 (1998).

    [12] [12] H. S. Gill, M. R. Prausnitz, "Coated microneedles for transdermal delivery," J. Control. Release. 117, 227–237 (2007).

    [13] [13] M. Wang, L. Hu, C. Xu, "Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing," Lab Chip. 17, 1373–1387 (2017).

    [14] [14] J. H. Park, M. G. Allen, M. R. Prausnitz, "Polymer microneedles for controlled-release drug delivery," Pharm. Res. 23, 1008–1019 (2006).

    [15] [15] L. Y. Chu, S. O. Choi, M. R. Prausnitz, "Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs," J. Pharm. Sci. 99, 4228–4238 (2010).

    [16] [16] I. C. Lee, J. S. He, M. T. Tsai, K. C. Lin, "Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery," J. Mater. Chem. B 3, 276–285 (2015).

    [17] [17] K. Tsioris, W. K. Raja, E. M. Pritchard, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, "Fabrication of silk microneedles for controlled–release drug delivery," Adv. Funct. Mater. 22, 330–335 (2012).

    [18] [18] Y. H. Park, K. H. Sang, I. Choi, K. S. Kim, J. Park, N. Choi, B. Kim, J. H. Sung, "Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery," Biotechnol. Bioproc. E 21, 110–118 (2016).

    [19] [19] Y. Ito, T. Nakahigashi, N. Yoshimoto, Y. Ueda, N. Hamasaki, K. Takada, "Transdermal insulin application system with dissolving microneedles," Diabetes. Technol. The. 14, 891–899 (2012).

    [20] [20] S. Lau, J. Fei, H. Liu, W. Chen, R. Liu, "Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery," J. Control. Release. 265, 113–119 (2017).

    [21] [21] D. Liu, B. Yu, G. Jiang, W. Yu, Y. Zhang, B. Xu, "Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats," Mater. Sci. Eng. C 90, 180–188 (2018).

    [22] [22] Y. Zhang, G. Jiang, W. Yu, D. Liu, B. Xu, "Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats," Mater. Sci. Eng. C 85, 18–26 (2018).

    [23] [23] D. Liu, Y. Zhang, G. Jiang, W. Yu, B. Xu, J. Zhu, "Fabrication of dissolving microneedles with thermal- responsive coating for NIR-Triggered transdermal delivery of metformin on diabetic rats," ACS Biomater. Sci. Eng. 4, 1687–1695 (2018).

    [24] [24] W. Yu, G. Jiang, Y. Zhang, D. Liu, B. Xu, J. Zhou, "Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats," J. Mater. Chem. B 5, 9507–9513 (2017).

    [25] [25] T. Rattanapak, J. Birchall, K. Young, M. Ishii, I. Meglinski, T. Rades, S. Hook, "Transcutaneous immunization using microneedles and cubosomes: Mechanistic investigations using optical coherence tomography and two-photon microscopy," J. Control. Release. 172, 894–903 (2013).

    [26] [26] K. Yan, H. Todo, K. Sugibayashi, "Transdermal drug delivery by in-skin electroporation using a microneedle array," Int. J. Pharm. 397, 77–83 (2010).

    [27] [27] J. Enfield, M. L. O'Connell, K. Lawlor, E. Jonathan, C. O'Mahony, M. Leahy, "In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography," J. Biomed. Opt. 15, 046001 (2010).

    [28] [28] S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O'Mahony, W. Drexler, B. Povazay, "In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography," Pharm. Res. 28, 66–81 (2011).

    [29] [29] R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, A. D. Woolfson, "Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution," J. Control. Release. 147, 333–341 (2010).

    [30] [30] R. Liu, M. Zhang, C. Jin, "In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography," J. Biophotonics. 10, 870–877 (2017).

    [31] [31] M. T. Tsai, I. C. Lee, Z. F. Lee, H. L. Liu, C. C. Wang, Y. C. Choia, H. Y. Chou, J. D. Lee, "In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography," Biomed. Opt. Express 7, 1865–1876 (2016).

    [32] [32] D. A. Boas, A. K. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed. Opt. 15, 011109 (2010).

    [33] [33] K. R. Forrester, J. Tulip, C. Leonard, C. Stewart, R. C. Bray, "A laser speckle imaging technique for measuring tissue perfusion," IEEE T. Bio-Med. Eng. 51, 2074–2084 (2004).

    [34] [34] J. H. Park, M. G. Allen, M. R. Prausnitz, "Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery," J. Control. Release. 104, 51–66 (2005).

    [35] [35] L. Duan, Y. He, R. Zhu, H. Ma, J. Guo, "Development of a spectrum domain 3D optical coherence tomography system," Chin. J. Lasers 36, 2528–2533 (2009).

    [36] [36] X. Guo, Z. Guo, H. Wei, H. Yang, Y. He, S. Xie, G. Wu, X. Deng, Q. Zhao, L. Li, "In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography," Photochem. Photobiol. 87, 734–740 (2011).

    [37] [37] J. Senarathna, A. Rege, N. Li, N. V. Thakor, "Laser speckle contrast imaging: Theory, instrumentation and applications," IEEE Rev. Biomed. Eng. 6, 99– 110 (2013).

    Tools

    Get Citation

    Copy Citation Text

    Jiawei Zhao, Yongbo Wu, Junbo Chen, Bangrong Lu, Honglian Xiong, Zhilie Tang, Yanhong Ji. In vivo monitoring of microneedle-based transdermal drug delivery of insulin[J]. Journal of Innovative Optical Health Sciences, 2018, 11(5): 1850032

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 6, 2018

    Accepted: Aug. 5, 2018

    Published Online: Dec. 26, 2018

    The Author Email: Jiawei Zhao (2015020896@m.scnu.edu.cn)

    DOI:10.1142/s1793545818500323

    Topics