Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3243(2024)
Effect of Hot Extrusion Processes on the Thermoelectric and Mechanical Properties of Bi2Te2.7Se0.3 Materials
[1] [1] KIM K T, LIM T S, HA G. Improvement in thermoelectric properties of n-type bismuth telluride nanopowders by hydrogen reduction treatment[J]. Rev Adv Mater Sci, 2011, 28(2): 196–199.
[2] [2] TANG H, BAI H, YANG X, et al. Thermal stability and interfacial structure evolution of Bi2Te3-based micro thermoelectric devices[J]. J Alloys Compd, 2022, 896: 163090.
[3] [3] GREENAWAY D L, HARBEKE G. Band structure of bismuth telluride, bismuth selenide and their respective alloys[J]. J Phys Chem Solids, 1965, 26(10): 1585–1604.
[4] [4] NAKAJIMA S. The crystal structure of Bi2Te3–xSex[J]. J Phys Chem Solids, 1963, 24(3): 479–485.
[5] [5] FANG T, LI X, HU C L, et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions[J]. Adv Funct Materials, 2019, 29(28): 1900677.
[6] [6] CAI J F, YANG J X, LIU G Q, et al. Boosting the thermoelectric performance of PbSe from the band convergence driven by spin-orbit coupling[J]. Adv Energy Mater, 2022, 12(8): 2103287.
[7] [7] ROWE D M. CRC handbook of thermoelectrics[M]. Boca Raton, FL:CRC Press, 1995.
[8] [8] YIM W M, ROSI F D. Compound tellurides and their alloys for Peltier cooling—A review[J]. Solid State Electron, 1972, 15(10): 1121–1140.
[9] [9] WANG H X, LUO G Q, TAN C, et al. Phonon engineering for thermoelectric enhancement of p-type bismuth telluride by a hot-pressing texture method[J]. ACS Appl Mater Interfaces, 2020,12(28): 31612–31618.
[10] [10] ZHU Y K, WU P, GUO J, et al. Achieving a fine balance in mechanical properties and thermoelectric performance in commercial Bi2Te3 materials[J]. Ceram Int, 2020, 46(10): 14994–15002.
[11] [11] XING T, LIU R H, HAO F, et al. Suppressed intrinsic excitation and enhanced thermoelectric performance in AgxBi0.5Sb1.5?xTe3[J]. J Mater Chem C, 2017, 5(47): 12619–12628.
[12] [12] PARK M S, KOO H Y, HA G H, et al. Characterization of Bi-Te p-type thermoelectric materials produced by uniaxial and hydrostatic sintering technologies[J]. J Nanosci Nanotechnol, 2020, 20(1):427–432.
[13] [13] LI C Y, NIU J X, ZHANG J Y, et al. Thermoelectric and mechanical properties of Bi0.42Sb1.58Te3/SnO2 bulk composites with controllable ZT peak for power generation[J]. J Eur Ceram Soc, 2024, 44(2): 961–969.
[14] [14] KHAN J S, AKRAM R, ALI SHAH A, et al. Enhanced zT due to non-stoichiometric induced defects for bismuth telluride thermoelectric materials[J]. Kuwait J Sci, 2023, 50(3): 231–237.
[15] [15] HAO F, XING T, QIU P F, et al. Enhanced thermoelectric performance in n-type Bi2Te3-based alloys via suppressing intrinsic excitation[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21372–21380.
[16] [16] JAI S C, GROVER K, TOMAR M, et al. Enhancing the thermoelectric performance of bismuth telluride through silver doping[J]. Indian J Eng Mater Sci, 2023, 30(5): 685–688.
[17] [17] MCQUEEN H, CELLIERS O. Application of hot workability studies to extrusion processing: Part II. Microstructural development and extrusion of Al, Al–Mg, and Al–Mg–Mn Alloys[J]. Can Metall Q,1996, 35(4): 305–319.
[18] [18] LV P H, WANG R C, PENG C Q, et al. Microstructural evolution and mechanical properties of 2195 Al–Li alloy processed by rapid solidification and thermo-mechanical processing[J]. J Alloys Compd,2023, 948: 169794.
[19] [19] JI H C, QIAO J H, KANG N Z, et al. Optimization of hot extrusion process parameters for 7075 aluminum alloy rims based on HyperXtrude[J]. J Mater Res Technol, 2023, 25: 4913–4928.
[20] [20] MIURA S, SATO Y, FUKUDA K, et al. Texture and thermoelectric properties of hot-extruded Bi2Te3 compound[J]. Mater Sci Eng A,2000, 277(1/2): 244–249.
[21] [21] LIM S S, JUNG S J, KIM B K, et al. Combined hot extrusion and spark plasma sintering method for producing highly textured thermoelectric Bi2Te3 alloys[J]. J Eur Ceram Soc, 2020, 40(8):3042–3048.
[22] [22] LIU X S, XING T, DENG T T, et al. Weak donor-like effect to enhance the thermoelectric performance of Bi2Te2.79Se0.21 near room temperature[J]. Funct Mater Lett, 2022, 15(2): 2251016.
[23] [23] JUNG S J, LEE B H, KIM B K, et al. Impurity-free, mechanical doping for the reproducible fabrication of the reliable n-type Bi2Te3-based thermoelectric alloys[J]. Acta Mater, 2018, 150:153–160.
[24] [24] LU T B, WANG B Y, LI G D, et al. Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications[J]. Mater Today Phys, 2023, 32: 101035.
[25] [25] LIU X S, XING T, QIU P F, et al. Suppressing the donor-like effect via fast extrusion engineering for high thermoelectric performance of polycrystalline Bi2Te2.79Se0.21[J]. J Materiomics, 2023, 9(2): 345–352.
[26] [26] JUNG S J, LIM S S, LEE B H, et al. Study of the relationship between process parameters, volatility of Te, and physical properties in n-type Bi2Te3-based alloys for the reproducible fabrication of high-performance thermoelectric materials[J]. J Alloys Compd, 2023,937: 168476.
[27] [27] ZHANG Y, XU G, NOZARIASBMARZ A, et al. Thermoelectric cooling performance enhancement in BiSeTe alloy by microstructure modulation via hot extrusion[J]. Small Sci, 2024, 4(2): 2300245.
[28] [28] CHO H, YUN J H, BACK S Y, et al. Superior thermoelectric cooling performance by suppressing bipolar diffusion effect and enhancing anisotropic texture in p-/n-type Bi2Te3 based compounds[J]. J Alloys Compd, 2021, 888: 161572.
[29] [29] HU X M, FAN X A, FENG B, et al. Decoupling Seebeck coefficient and resistivity, and simultaneously optimizing thermoelectric and mechanical performances for n-type BiTeSe alloy by multi-pass equal channel angular extrusion[J]. Mater Sci Eng B, 2021, 263: 114846.
[30] [30] LAVRENTEV M G, BUBLIK V T, MILOVICH F O, et al.Regularities of structure formation in 30 mm rods of thermoelectric material during hot extrusion[J]. Materials, 2021, 14(22): 7059.
[31] [31] YANG J Y, CHEN R G, FAN X A, et al. Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion[J]. J Alloys Compd, 2007, 429(1/2):156–162.
[32] [32] JIANG J, CHEN L D, BAI S Q, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering[J]. Mater Sci Eng B, 2005, 117(3): 334–338.
[33] [33] DUAN X K, HU K G, DING S F, et al. Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 by indium and sodium co-doping[J].Funct Mater Lett, 2015, 8(1): 1550008.
Get Citation
Copy Citation Text
LI Quan, XING Tong, LI Xiaoya, QIU Pengfei, SHI Xun. Effect of Hot Extrusion Processes on the Thermoelectric and Mechanical Properties of Bi2Te2.7Se0.3 Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3243
Received: Mar. 28, 2024
Accepted: --
Published Online: Nov. 14, 2024
The Author Email: Xun SHI (xshi@mail.sic.ac.cn)