Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3243(2024)

Effect of Hot Extrusion Processes on the Thermoelectric and Mechanical Properties of Bi2Te2.7Se0.3 Materials

LI Quan1...2, XING Tong2, LI Xiaoya2, QIU Pengfei2 and SHI Xun2,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] KIM K T, LIM T S, HA G. Improvement in thermoelectric properties of n-type bismuth telluride nanopowders by hydrogen reduction treatment[J]. Rev Adv Mater Sci, 2011, 28(2): 196–199.

    [2] [2] TANG H, BAI H, YANG X, et al. Thermal stability and interfacial structure evolution of Bi2Te3-based micro thermoelectric devices[J]. J Alloys Compd, 2022, 896: 163090.

    [3] [3] GREENAWAY D L, HARBEKE G. Band structure of bismuth telluride, bismuth selenide and their respective alloys[J]. J Phys Chem Solids, 1965, 26(10): 1585–1604.

    [4] [4] NAKAJIMA S. The crystal structure of Bi2Te3–xSex[J]. J Phys Chem Solids, 1963, 24(3): 479–485.

    [5] [5] FANG T, LI X, HU C L, et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions[J]. Adv Funct Materials, 2019, 29(28): 1900677.

    [6] [6] CAI J F, YANG J X, LIU G Q, et al. Boosting the thermoelectric performance of PbSe from the band convergence driven by spin-orbit coupling[J]. Adv Energy Mater, 2022, 12(8): 2103287.

    [7] [7] ROWE D M. CRC handbook of thermoelectrics[M]. Boca Raton, FL:CRC Press, 1995.

    [8] [8] YIM W M, ROSI F D. Compound tellurides and their alloys for Peltier cooling—A review[J]. Solid State Electron, 1972, 15(10): 1121–1140.

    [9] [9] WANG H X, LUO G Q, TAN C, et al. Phonon engineering for thermoelectric enhancement of p-type bismuth telluride by a hot-pressing texture method[J]. ACS Appl Mater Interfaces, 2020,12(28): 31612–31618.

    [10] [10] ZHU Y K, WU P, GUO J, et al. Achieving a fine balance in mechanical properties and thermoelectric performance in commercial Bi2Te3 materials[J]. Ceram Int, 2020, 46(10): 14994–15002.

    [11] [11] XING T, LIU R H, HAO F, et al. Suppressed intrinsic excitation and enhanced thermoelectric performance in AgxBi0.5Sb1.5?xTe3[J]. J Mater Chem C, 2017, 5(47): 12619–12628.

    [12] [12] PARK M S, KOO H Y, HA G H, et al. Characterization of Bi-Te p-type thermoelectric materials produced by uniaxial and hydrostatic sintering technologies[J]. J Nanosci Nanotechnol, 2020, 20(1):427–432.

    [13] [13] LI C Y, NIU J X, ZHANG J Y, et al. Thermoelectric and mechanical properties of Bi0.42Sb1.58Te3/SnO2 bulk composites with controllable ZT peak for power generation[J]. J Eur Ceram Soc, 2024, 44(2): 961–969.

    [14] [14] KHAN J S, AKRAM R, ALI SHAH A, et al. Enhanced zT due to non-stoichiometric induced defects for bismuth telluride thermoelectric materials[J]. Kuwait J Sci, 2023, 50(3): 231–237.

    [15] [15] HAO F, XING T, QIU P F, et al. Enhanced thermoelectric performance in n-type Bi2Te3-based alloys via suppressing intrinsic excitation[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21372–21380.

    [16] [16] JAI S C, GROVER K, TOMAR M, et al. Enhancing the thermoelectric performance of bismuth telluride through silver doping[J]. Indian J Eng Mater Sci, 2023, 30(5): 685–688.

    [17] [17] MCQUEEN H, CELLIERS O. Application of hot workability studies to extrusion processing: Part II. Microstructural development and extrusion of Al, Al–Mg, and Al–Mg–Mn Alloys[J]. Can Metall Q,1996, 35(4): 305–319.

    [18] [18] LV P H, WANG R C, PENG C Q, et al. Microstructural evolution and mechanical properties of 2195 Al–Li alloy processed by rapid solidification and thermo-mechanical processing[J]. J Alloys Compd,2023, 948: 169794.

    [19] [19] JI H C, QIAO J H, KANG N Z, et al. Optimization of hot extrusion process parameters for 7075 aluminum alloy rims based on HyperXtrude[J]. J Mater Res Technol, 2023, 25: 4913–4928.

    [20] [20] MIURA S, SATO Y, FUKUDA K, et al. Texture and thermoelectric properties of hot-extruded Bi2Te3 compound[J]. Mater Sci Eng A,2000, 277(1/2): 244–249.

    [21] [21] LIM S S, JUNG S J, KIM B K, et al. Combined hot extrusion and spark plasma sintering method for producing highly textured thermoelectric Bi2Te3 alloys[J]. J Eur Ceram Soc, 2020, 40(8):3042–3048.

    [22] [22] LIU X S, XING T, DENG T T, et al. Weak donor-like effect to enhance the thermoelectric performance of Bi2Te2.79Se0.21 near room temperature[J]. Funct Mater Lett, 2022, 15(2): 2251016.

    [23] [23] JUNG S J, LEE B H, KIM B K, et al. Impurity-free, mechanical doping for the reproducible fabrication of the reliable n-type Bi2Te3-based thermoelectric alloys[J]. Acta Mater, 2018, 150:153–160.

    [24] [24] LU T B, WANG B Y, LI G D, et al. Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications[J]. Mater Today Phys, 2023, 32: 101035.

    [25] [25] LIU X S, XING T, QIU P F, et al. Suppressing the donor-like effect via fast extrusion engineering for high thermoelectric performance of polycrystalline Bi2Te2.79Se0.21[J]. J Materiomics, 2023, 9(2): 345–352.

    [26] [26] JUNG S J, LIM S S, LEE B H, et al. Study of the relationship between process parameters, volatility of Te, and physical properties in n-type Bi2Te3-based alloys for the reproducible fabrication of high-performance thermoelectric materials[J]. J Alloys Compd, 2023,937: 168476.

    [27] [27] ZHANG Y, XU G, NOZARIASBMARZ A, et al. Thermoelectric cooling performance enhancement in BiSeTe alloy by microstructure modulation via hot extrusion[J]. Small Sci, 2024, 4(2): 2300245.

    [28] [28] CHO H, YUN J H, BACK S Y, et al. Superior thermoelectric cooling performance by suppressing bipolar diffusion effect and enhancing anisotropic texture in p-/n-type Bi2Te3 based compounds[J]. J Alloys Compd, 2021, 888: 161572.

    [29] [29] HU X M, FAN X A, FENG B, et al. Decoupling Seebeck coefficient and resistivity, and simultaneously optimizing thermoelectric and mechanical performances for n-type BiTeSe alloy by multi-pass equal channel angular extrusion[J]. Mater Sci Eng B, 2021, 263: 114846.

    [30] [30] LAVRENTEV M G, BUBLIK V T, MILOVICH F O, et al.Regularities of structure formation in 30 mm rods of thermoelectric material during hot extrusion[J]. Materials, 2021, 14(22): 7059.

    [31] [31] YANG J Y, CHEN R G, FAN X A, et al. Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion[J]. J Alloys Compd, 2007, 429(1/2):156–162.

    [32] [32] JIANG J, CHEN L D, BAI S Q, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering[J]. Mater Sci Eng B, 2005, 117(3): 334–338.

    [33] [33] DUAN X K, HU K G, DING S F, et al. Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 by indium and sodium co-doping[J].Funct Mater Lett, 2015, 8(1): 1550008.

    Tools

    Get Citation

    Copy Citation Text

    LI Quan, XING Tong, LI Xiaoya, QIU Pengfei, SHI Xun. Effect of Hot Extrusion Processes on the Thermoelectric and Mechanical Properties of Bi2Te2.7Se0.3 Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3243

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 28, 2024

    Accepted: --

    Published Online: Nov. 14, 2024

    The Author Email: Xun SHI (xshi@mail.sic.ac.cn)

    DOI:10.14062/j.issn.0454-5648.20240245

    Topics