Matter and Radiation at Extremes, Volume. 6, Issue 5, 058401(2021)

Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12

Mengting Chen1... Songhao Guo1, Kejun Bu1, Sujin Lee2, Hui Luo1, Yiming Wang1, Bingyan Liu1, Zhipeng Yan1, Hongliang Dong1, Wenge Yang1, Biwu Ma2 and Xujie Lü1,a) |Show fewer author(s)
Author Affiliations
  • 1Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Shanghai 201203, People’s Republic of China
  • 2Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310, USA
  • show less
    References(58)

    [1] Y.Chen, Y.Lei, Y.Li et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature, 577, 209-215(2020).

    [2] S.Bai, X.-K.Liu, W.Xu et al. Metal halide perovskites for light-emitting diodes. Nat. Mater., 20, 10-21(2020).

    [3] M. M.Lee, T.Miyasaka, J.Teuscher et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).

    [4] J.-C.Blancon, W.Nie, H.Tsai et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 536, 312-317(2016).

    [5] Y.Tian, Z.Yuan, C.Zhou et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun., 8, 14051-14057(2017).

    [6] S.Lee, L.Xu, C.Zhou et al. Recent advances in luminescent zero-dimensional organic metal halide hybrids. Adv. Opt. Mater., 2, 2001766(2020).

    [7] Q.Fu, B.Huang, X.Tang et al. Recent progress on the long-term stability of perovskite solar cells. Adv. Sci., 5, 1700387(2018).

    [8] H.Lin, Y.Tian, C.Zhou et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci., 9, 586-593(2018).

    [9] H.Lin, Y.Tian, C.Zhou et al. Low-dimensional organometal halide perovskites. ACS Energy Lett., 3, 54-62(2018).

    [10] M.Li, Z.Xia. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev., 50, 2626-2662(2021).

    [11] L.-K.Gong, J.-R.Li, Z.-F.Wu et al. Enhancing the phosphorescence of hybrid metal halides through molecular sensitization. J. Mater. Chem. C, 7, 9803-9807(2019).

    [12] B.Febriansyah, D.Giovanni, C. S. D.Neo et al. Targeted synthesis of trimeric organic–bromoplumbate hybrids that display intrinsic, highly Stokes-shifted, broadband emission. Chem. Mater., 32, 4431-4441(2020).

    [13] M.Li, L.Ning, J.Zhou et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies. J. Phys. Chem. Lett., 10, 1337-1341(2019).

    [14] Z.Liu, S.Lu, Z.Ma et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat. Commun., 9, 4506(2018).

    [15] S.Li, J.Liu, J.Luo et al. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett., 10, 1999-2007(2019).

    [16] K.Bu, S.Guo, J.Li et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features. J. Am. Chem. Soc., 143, 2545-2551(2021).

    [17] M.Li, T.Liu, Y.Wang et al. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies. Matter Radiat. Extremes, 5, 018201(2020).

    [18] C.Pei, L.Wang. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extremes, 4, 028201(2019).

    [19] C. S.Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes, 5, 018202(2020).

    [20] Q.Hu, X.Lü, C.Stoumpos et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites. Natl. Sci. Rev.(2020).

    [21] A.Navrotsky. Pressure-induced structural changes cause large enhancement of photoluminescence in halide perovskites: A quantitative relationship. Natl. Sci. Rev.(2021).

    [22] H. K.Mao, W. L.Mao. Key problems of the four-dimensional earth system. Matter Radiat. Extremes, 5, 038102(2020).

    [23] B.Chen, H.Gou, H. K.Mao et al. 2020—Transformative science in the pressure dimension. Matter Radiat. Extremes, 6, 013001(2020).

    [24] Z.Ma, Y.Shi, D.Zhao et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. J. Am. Chem. Soc., 141, 6504-6508(2019).

    [25] K.Bu, S.Guo, Y.Zhao et al. Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7. Angew. Chem., Int. Ed., 59, 17533-17539(2020).

    [26] S.Lee, J.Neu, C.Zhou et al. Bulk assemblies of lead bromide trimer clusters with geometry-dependent photophysical properties. Chem. Mater., 32, 374-380(2020).

    [27] B. J.Foley, D. L.Marlowe, K.Sun et al. Temperature dependent energy levels of methylammonium lead iodide perovskite. Appl. Phys. Lett., 106, 243904(2015).

    [28] J.Gascon, F.Kapteijn, J. G.Santaclara et al. Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 19, 4118-4125(2017).

    [29] A.Jaffe, Y.Lin, W. L.Mao et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc., 139, 4330-4333(2017).

    [30] T.Cai, M.Que, H.Zhu et al. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals. J. Phys. Chem. Lett., 9, 4199-4205(2018).

    [31] P.Guo, L.Kong, G.Liu et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites. ACS Energy Lett., 2, 2518-2524(2017).

    [32] X.Liu, X.Ma, Y.Yuan et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure. Adv. Sci., 6, 1900240(2019).

    [33] Q.Li, W.Pan, Y.Wang et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem., Int. Ed., 129, 16185-16189(2017).

    [34] A. S.Ahmad, X.Ren, X.Yan et al. Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite. J. Phys. Chem. C, 123, 15204-15208(2019).

    [35] Z.Chen, M.Li, Q.Li et al. Pressure-engineered photoluminescence tuning in zero-dimensional lead bromide trimer clusters. Angew. Chem., Int. Ed., 60, 2583-2587(2020).

    [36] Y.Lin, C.Liu, L.Zhang et al. Tuning optical and electronic properties in low-toxicity organic–inorganic hybrid (CH3NH3)3Bi2I9 under high pressure. J. Phys. Chem. Lett., 10, 1676-1683(2019).

    [37] H. M.Rietveld. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 2, 65-71(1969).

    [38] F.Birch. Finite elastic strain of cubic crystals. Phys. Rev., 71, 809-824(1947).

    [39] Z.Chen, Q.Li, B.Yang et al. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units. J. Am. Chem. Soc., 142, 1786-1791(2020).

    [40] Y.Dai, Y.Gu, H.Liu et al. Pressure-induced blue-shifted and enhanced emission: A cooperative effect between aggregation-induced emission and energy-transfer suppression. J. Am. Chem. Soc., 142, 1153-1158(2020).

    [41] D. C.Hooper, C.Kuppe, A. G.Mark et al. Strong rotational anisotropies affect nonlinear chiral metamaterials. Adv. Mater., 29, 1605110(2017).

    [42] S.Guo, H.Luo, Y.Wang et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss. J. Am. Chem. Soc., 142, 16001-16006(2020).

    [43] F.Li, Z.Ma, L.Sui et al. Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure. Adv. Opt. Mater., 8, 2000713(2020).

    [44] C.Liu, L.Wang, L.Zhang et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew. Chem., Int. Ed., 57, 11213-11217(2018).

    [45] B.Liu, J.Yan, T.Yin et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes. J. Am. Chem. Soc., 141, 1235-1241(2019).

    [46] K.Wang, L.Wu, L.Zhang et al. Pressure-induced broadband emission of 2D organic–inorganic hybrid perovskite. Adv. Sci., 6, 1801628(2019).

    [47] C. K.Gan, S.Liu, S.Sun et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv., 5, eaav9445(2019).

    [48] Y.Chen, R.Fu, L.Wang et al. Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. J. Mater. Chem. A, 7, 6357-6362(2019).

    [49] Y.Fang, L.Wu, L.Zhang et al. Pressure‐induced emission (PIE) and phase transition of a two‐dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). Angew. Chem., Int. Ed., 58, 15249(2019).

    [50] T.Ishihara, K.Matsuishi, S.Onari et al. Optical properties and structural phase transitions of lead-halide based inorganic–organic 3D and 2D perovskite semiconductors under high pressure. Phys. Status Solidi B, 241, 3328-3333(2004).

    [51] W. K.Chong, Y.Fang, T.Yin et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates. Adv. Mater., 30, 1705017(2018).

    [52] Y.Fang, S.Jiang, R.Li et al. Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite. Angew. Chem., Int. Ed., 55, 6540-6544(2016).

    [53] C. M.Beavers, A.Jaffe, Y.Lin et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci., 2, 201-209(2016).

    [54] F.Li, Z.Ma, G.Qi et al. Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure. Nanoscale, 11, 820-825(2019).

    [55] Y.Fang, L.Sui, L.Zhang et al. Tuning emission and electron–phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure. ACS Energy Lett., 4, 2975-2982(2019).

    [56] H.-H.Fang, M. R.Filip, M. E.Kamminga et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater., 28, 4554-4562(2016).

    [57] H.Lin, M.Worku, C.Zhou et al. Blue emitting single crystalline assembly of metal halide clusters. J. Am. Chem. Soc., 140, 13181-13184(2018).

    [58] X.Che, J. M.Hoffman, S.Sidhik et al. From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer. J. Am. Chem. Soc., 141, 10661-10676(2019).

    Tools

    Get Citation

    Copy Citation Text

    Mengting Chen, Songhao Guo, Kejun Bu, Sujin Lee, Hui Luo, Yiming Wang, Bingyan Liu, Zhipeng Yan, Hongliang Dong, Wenge Yang, Biwu Ma, Xujie Lü. Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12[J]. Matter and Radiation at Extremes, 2021, 6(5): 058401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: High Pressure Physics and Materials Science

    Received: Jun. 2, 2021

    Accepted: Aug. 6, 2021

    Published Online: Oct. 19, 2021

    The Author Email: Lü Xujie (xujie.lu@hpstar.ac.cn)

    DOI:10.1063/5.0058821

    Topics