[1] Y.Chen, Y.Lei, Y.Li et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature, 577, 209-215(2020).
[2] S.Bai, X.-K.Liu, W.Xu et al. Metal halide perovskites for light-emitting diodes. Nat. Mater., 20, 10-21(2020).
[3] M. M.Lee, T.Miyasaka, J.Teuscher et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).
[4] J.-C.Blancon, W.Nie, H.Tsai et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 536, 312-317(2016).
[5] Y.Tian, Z.Yuan, C.Zhou et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun., 8, 14051-14057(2017).
[6] S.Lee, L.Xu, C.Zhou et al. Recent advances in luminescent zero-dimensional organic metal halide hybrids. Adv. Opt. Mater., 2, 2001766(2020).
[7] Q.Fu, B.Huang, X.Tang et al. Recent progress on the long-term stability of perovskite solar cells. Adv. Sci., 5, 1700387(2018).
[8] H.Lin, Y.Tian, C.Zhou et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci., 9, 586-593(2018).
[9] H.Lin, Y.Tian, C.Zhou et al. Low-dimensional organometal halide perovskites. ACS Energy Lett., 3, 54-62(2018).
[10] M.Li, Z.Xia. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev., 50, 2626-2662(2021).
[11] L.-K.Gong, J.-R.Li, Z.-F.Wu et al. Enhancing the phosphorescence of hybrid metal halides through molecular sensitization. J. Mater. Chem. C, 7, 9803-9807(2019).
[12] B.Febriansyah, D.Giovanni, C. S. D.Neo et al. Targeted synthesis of trimeric organic–bromoplumbate hybrids that display intrinsic, highly Stokes-shifted, broadband emission. Chem. Mater., 32, 4431-4441(2020).
[13] M.Li, L.Ning, J.Zhou et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies. J. Phys. Chem. Lett., 10, 1337-1341(2019).
[14] Z.Liu, S.Lu, Z.Ma et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat. Commun., 9, 4506(2018).
[15] S.Li, J.Liu, J.Luo et al. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett., 10, 1999-2007(2019).
[16] K.Bu, S.Guo, J.Li et al. Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features. J. Am. Chem. Soc., 143, 2545-2551(2021).
[17] M.Li, T.Liu, Y.Wang et al. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies. Matter Radiat. Extremes, 5, 018201(2020).
[18] C.Pei, L.Wang. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extremes, 4, 028201(2019).
[19] C. S.Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes, 5, 018202(2020).
[20] Q.Hu, X.Lü, C.Stoumpos et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites. Natl. Sci. Rev.(2020).
[21] A.Navrotsky. Pressure-induced structural changes cause large enhancement of photoluminescence in halide perovskites: A quantitative relationship. Natl. Sci. Rev.(2021).
[22] H. K.Mao, W. L.Mao. Key problems of the four-dimensional earth system. Matter Radiat. Extremes, 5, 038102(2020).
[23] B.Chen, H.Gou, H. K.Mao et al. 2020—Transformative science in the pressure dimension. Matter Radiat. Extremes, 6, 013001(2020).
[24] Z.Ma, Y.Shi, D.Zhao et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. J. Am. Chem. Soc., 141, 6504-6508(2019).
[25] K.Bu, S.Guo, Y.Zhao et al. Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7. Angew. Chem., Int. Ed., 59, 17533-17539(2020).
[26] S.Lee, J.Neu, C.Zhou et al. Bulk assemblies of lead bromide trimer clusters with geometry-dependent photophysical properties. Chem. Mater., 32, 374-380(2020).
[27] B. J.Foley, D. L.Marlowe, K.Sun et al. Temperature dependent energy levels of methylammonium lead iodide perovskite. Appl. Phys. Lett., 106, 243904(2015).
[28] J.Gascon, F.Kapteijn, J. G.Santaclara et al. Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 19, 4118-4125(2017).
[29] A.Jaffe, Y.Lin, W. L.Mao et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc., 139, 4330-4333(2017).
[30] T.Cai, M.Que, H.Zhu et al. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals. J. Phys. Chem. Lett., 9, 4199-4205(2018).
[31] P.Guo, L.Kong, G.Liu et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites. ACS Energy Lett., 2, 2518-2524(2017).
[32] X.Liu, X.Ma, Y.Yuan et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure. Adv. Sci., 6, 1900240(2019).
[33] Q.Li, W.Pan, Y.Wang et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem., Int. Ed., 129, 16185-16189(2017).
[34] A. S.Ahmad, X.Ren, X.Yan et al. Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite. J. Phys. Chem. C, 123, 15204-15208(2019).
[35] Z.Chen, M.Li, Q.Li et al. Pressure-engineered photoluminescence tuning in zero-dimensional lead bromide trimer clusters. Angew. Chem., Int. Ed., 60, 2583-2587(2020).
[36] Y.Lin, C.Liu, L.Zhang et al. Tuning optical and electronic properties in low-toxicity organic–inorganic hybrid (CH3NH3)3Bi2I9 under high pressure. J. Phys. Chem. Lett., 10, 1676-1683(2019).
[37] H. M.Rietveld. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 2, 65-71(1969).
[38] F.Birch. Finite elastic strain of cubic crystals. Phys. Rev., 71, 809-824(1947).
[39] Z.Chen, Q.Li, B.Yang et al. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units. J. Am. Chem. Soc., 142, 1786-1791(2020).
[40] Y.Dai, Y.Gu, H.Liu et al. Pressure-induced blue-shifted and enhanced emission: A cooperative effect between aggregation-induced emission and energy-transfer suppression. J. Am. Chem. Soc., 142, 1153-1158(2020).
[41] D. C.Hooper, C.Kuppe, A. G.Mark et al. Strong rotational anisotropies affect nonlinear chiral metamaterials. Adv. Mater., 29, 1605110(2017).
[42] S.Guo, H.Luo, Y.Wang et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss. J. Am. Chem. Soc., 142, 16001-16006(2020).
[43] F.Li, Z.Ma, L.Sui et al. Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure. Adv. Opt. Mater., 8, 2000713(2020).
[44] C.Liu, L.Wang, L.Zhang et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew. Chem., Int. Ed., 57, 11213-11217(2018).
[45] B.Liu, J.Yan, T.Yin et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes. J. Am. Chem. Soc., 141, 1235-1241(2019).
[46] K.Wang, L.Wu, L.Zhang et al. Pressure-induced broadband emission of 2D organic–inorganic hybrid perovskite. Adv. Sci., 6, 1801628(2019).
[47] C. K.Gan, S.Liu, S.Sun et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv., 5, eaav9445(2019).
[48] Y.Chen, R.Fu, L.Wang et al. Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. J. Mater. Chem. A, 7, 6357-6362(2019).
[49] Y.Fang, L.Wu, L.Zhang et al. Pressure‐induced emission (PIE) and phase transition of a two‐dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). Angew. Chem., Int. Ed., 58, 15249(2019).
[50] T.Ishihara, K.Matsuishi, S.Onari et al. Optical properties and structural phase transitions of lead-halide based inorganic–organic 3D and 2D perovskite semiconductors under high pressure. Phys. Status Solidi B, 241, 3328-3333(2004).
[51] W. K.Chong, Y.Fang, T.Yin et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates. Adv. Mater., 30, 1705017(2018).
[52] Y.Fang, S.Jiang, R.Li et al. Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite. Angew. Chem., Int. Ed., 55, 6540-6544(2016).
[53] C. M.Beavers, A.Jaffe, Y.Lin et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci., 2, 201-209(2016).
[54] F.Li, Z.Ma, G.Qi et al. Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure. Nanoscale, 11, 820-825(2019).
[55] Y.Fang, L.Sui, L.Zhang et al. Tuning emission and electron–phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure. ACS Energy Lett., 4, 2975-2982(2019).
[56] H.-H.Fang, M. R.Filip, M. E.Kamminga et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater., 28, 4554-4562(2016).
[57] H.Lin, M.Worku, C.Zhou et al. Blue emitting single crystalline assembly of metal halide clusters. J. Am. Chem. Soc., 140, 13181-13184(2018).
[58] X.Che, J. M.Hoffman, S.Sidhik et al. From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer. J. Am. Chem. Soc., 141, 10661-10676(2019).