Electronics Optics & Control, Volume. 30, Issue 12, 115(2023)
Hardware Acceleration of Real-Time Remote Sensing Image Detection Based on FPGA
[1] [1] CHEBUD Y, NAJA G M, RIVERO R G, et al.Water quality monitoring using remote sensing and an artificial neural network[J].Water, Air and Soil Pollution, 2012, 223(8):4875-4887.
[8] [8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2022-12-15].https://arxiv.org/abs/2004.10934.
[9] [9] LI Z, LANG C Y, LIEW J H, et al.Cross-layer feature pyramid network for salient object detection[J].IEEE Transactions on Image Processing, 2021, 30: 4587-4598.
[10] [10] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI:IEEE, 2017:1800-1807.
[11] [11] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville, TN:IEEE, 2021:13708-13717.
Get Citation
Copy Citation Text
ZHAO Yonghui, LYU Yong, LIU Xueyan, WAN Xiaoyu, GUO Chunyu, LIU Shuyu. Hardware Acceleration of Real-Time Remote Sensing Image Detection Based on FPGA[J]. Electronics Optics & Control, 2023, 30(12): 115
Category:
Received: Dec. 19, 2022
Accepted: --
Published Online: Jan. 4, 2024
The Author Email: