Infrared and Laser Engineering, Volume. 52, Issue 2, 20220593(2023)

Deep-learning-based point-diffraction interferometer for 3D coordinate positioning

Yiwei Lu1, Yongjie Luo2, Wei Liu1、*, Ming Kong1, and Daodang Wang3
Author Affiliations
  • 1College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  • 2Zhejiang Institute of Medical Device Testing, Hangzhou 310018, China
  • 3James C. Wyant College of Optical Sciences, University of Arizona, Tucson 85721, USA
  • show less

    In order to improve the measurement accuracy, stability and efficiency of the existing 3D coordinate positioning technology, a deep-learning-based point-diffraction interferometer for 3D coordinate measurement method was proposed. A deep neural network was designed for coordinate reconstruction of the point-diffraction interference field. The phase difference matrix was used as the input to construct the training dataset, and the coordinates of point-diffraction sources were used as the output to train the neural network model. The well-trained neural network was used to process the measured phase distribution initially and the phase information was converted to the coordinates of point-diffraction sources. According to the obtained coordinates of point-diffraction sources, the initial particles of the particle swarm optimization algorithm were further modified, and then the high-precision three-dimensional coordinate was reconstructed. This neural network provides a feasible method to establish the nonlinear relationship between the phase distribution of the interference field and the coordinates of the point-diffraction sources, and significantly improves the accuracy, stability and measurement efficiency of the 3D coordinate positioning. In order to verify the feasibility of the proposed method, numerical simulation and experimental verification were carried out, and different methods were used for repeated comparison and analysis. The results show that the single measurement time of the proposed method is about 0.05 s, and the experimental accuracy can reach the submicron magnitude. The mean and RMS values of the repeatability experiments are 0.05 μm and 0.05 μm, respectively, which proves the feasibility of the proposed method and its good measurement accuracy and stability. It provides an effective and feasible method for 3D coordinate positioning.

    Tools

    Get Citation

    Copy Citation Text

    Yiwei Lu, Yongjie Luo, Wei Liu, Ming Kong, Daodang Wang. Deep-learning-based point-diffraction interferometer for 3D coordinate positioning[J]. Infrared and Laser Engineering, 2023, 52(2): 20220593

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Photoelectric measurement

    Received: Aug. 10, 2022

    Accepted: --

    Published Online: Mar. 13, 2023

    The Author Email: Liu Wei (liuw@cjlu.edu.cn)

    DOI:10.3788/IRLA20220593

    Topics